Конспект лекций по предмету "Математическая статистика"


Оценка параметров нормального распределения

Нередки случаи, когда у нас есть некоторые основания считать интересующую нас СВ распределенной по нормальному закону. Существуют специальные методы проверки такой гипотезы по данным наблюдений, но мы ограничимся напоминанием природы этого распределения ­– наличия влияния на значение данной величины достаточно большого количества случайных факторов.
Напомним себе также, что у нормального распределения всего два параметра – математическое ожидание m и среднеквадратичное отклонение s.
Пусть мы произвели 40 наблюдений над такой случайной величиной X и эти наблюдения представили в виде:

Таблица 5-2
Xi
85
105
125
145
165
185
205
225
Всего
ni
4
3
3
2
4
7
12
5
40
f i
0.100
0.075
0.075
0.050
0.100
0.175
0.300
0.125
1
Если мы усредним значения наблюдений, то формула расчета выборочного среднего
Mx = S Xi · ni =S Xi · fi {5–1} будет отличаться от выражения для математического ожидания m только использованием частот вместо вероятностей.
В нашем примере выборочное среднее значение составит Mx = 171.5 , но из этого пока еще нельзя сделать заключение о равенстве m = 171.5.
· Во-первых, Mx – это непрерывная СВ, следовательно, вероятность ее точного равенства чему-нибудь вообще равна нулю.
· Во-вторых, нас настораживает отсутствие ряда значений X.
· В-третьих, частоты наблюдений стремятся к вероятностям при бесконечно большом числе наблюдений, а у нас их только 40. Не мало ли?
Если мы усредним теперь значения квадратов отклонений наблюдений от выборочного среднего, то формула расчета выборочной дисперсии
Dx = (Sx)2 = S (Xi – Mx)2 · ni =S (Xi)2 · fi – (Mx)2 {5–2} также не будет отличаться от формулы, определяющей дисперсию s2 .
В нашем примере выборочное значение среднеквадратичного отклонения составит Sx= 45.5 , но это совсем не означает, что s =45.5.
И всё же ­– как оценить оба параметра распределения или хотя бы один из них по данным наблюдений, т.е. по уже найденным Mx и Sx?
Прикладная статистика дает следующие рекомендации:
· значение дисперсии s2 считается неизвестным и решается первый вопрос ­– достаточно ли число наблюдений N для того, чтобы использовать вместо величины s ее выборочное значение Sx;
· если это так, то решается второй вопрос ­ ­– как построить нулевую гипотезу о величине математического ожидания m и как ее проверить.
Предположим вначале, что значение s каким–то способом найдено. Тогда формулируется простая нулевая гипотеза Њ0: m=Mx и осуществляется её проверка с помощью следующего критерия. Вычисляется вспомогательная функция (Z–критерий)
, {5-3} значение и знак которой зависят от выбранного нами предполагаемого m.
Доказано, что значение Z является СВ с математическим ожиданием 0 , дисперсией 1 и имеет нормальное распределение.
Теперь важно правильно построить альтернативную гипотезу Њ1. Здесь чаще всего применяется два подхода.
Выбор одного из них зависит от того ­– большое или малое (по модулю) значение Zу нас получилось. Иными словами ­– как далеко от расчетного Mx мы выбрали гипотетическое m..
· При малых отличиях между Mx и m разумно строить гипотезы в виде
Њ0:m= Mx;
Њ1: неизвестное нам значение m лежит в пределах
Mx – ·Z 2k £ m £ Mx + ·Z 2k {5–4}

Критическое (соответствующее уровню значимости в 5%) значение критерия составляет при этом = 1.96 (двухсторонний критерий). Если оказывается, что выборочное значение критерия ½Z½ < 1.96, то гипотезаЊ0: m=Mx принимается, данные наблюдений не противоречат ей.
Если же это не так, то мы “в утешение” получаем информацию другого вида ­– где, на каком интервале находится искомое значение m.
· При больших отличиях (в большую или меньшую сторону) между m и Mx гипотезы строятся иначе Њ0: m= Mx; Њ1: неизвестное нам значение m лежит вне пределов, указанных в {5–4}.
Теперь критическое (соответствующее уровню значимости в 5%) значение критерия составляет Z 1k = 1.645 (односторонний критерий). Если оказывается, что выборочное значение критерия½Z½ ³ 1.645, то гипотеза Њ0: m =Mx отвергается, данные наблюдений противоречат ей.
Если же это не так, то мы получаем информацию другого вида ­– где, на каком крае интервале находится искомое значение m. Разумеется, для других (не 5%) значений уровня значимости Z1k и Z 2k являются другими.
Чуть сложнее путь проверки гипотез о математическом ожидании m в случаях, когда s нам неизвестна и приходится довольствоваться выборочным значением среднеквадратичного отклонения по данным наблюдений.
В этом случае вместо “z –критерия” используется т.н. “t–критерий” или критерий Стьюдента
, {5–5} в котором используется значение “несмещенной” оценки для дисперсии s2
(Sx)2 = S (Xi – Mx)2 · ni . {5–6}
Далее используется доказанное в теории положение ­– случайная величина t имеет специальное распределение Стьюдента с m=N–1 степенями свободы.
Существуют таблицы для этого распределения по которым можно найти вероятность ошибки первого рода или, что более удобно, – граничное значение этой величины при заданных заранее a и m. Таким образом, если вычисленное нами значение ½t½³ t(a,m), то Њ0 отвергается, если же это не так – Њ0 принимается. Конечно, при большом количестве наблюдений (N>100…120) различие между z– и t–критериями несущественно. Значения критерия Стьюдента для a=0.05 при разных количествах наблюдений составляют:
Таблица 5–3
m
1
2
3
4
5
6
7
8
9
10
20
30
40
120
t
12.7
4.30
3.18
2.78
2.57
2.45
2.36
2.31
2.26
2.23
2.09
2.04
2.02
1.98


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.