Конспект лекций по предмету "Процессы и аппараты пищевой технологии"


ВОПРОС №1 Общая характеристика тепловых процессов.

К тепловым относятся процессы, скорость которых определяется скоро­стью переноса энергии в форме теплоты нагревания, охлаждения, испарения и конденсации. Нагревание — повышение температуры тел путем подвода к ним теплоты. Охлаждение — понижение температуры тел путем отвода от них теплоты. Частным случаем испарения является процесс выпаривания — концентрирования при кипении растворов твердых нелетучих веществ путем удаления жидкого летучего растворителя в виде паров. Конденсация — сжи­жение паров какого-либо вещества путем отвода от них теплоты.
Теплота является наиболее универсальной формой энергии, возникаю­щей в результате молекулярно-кинетического (теплового) движения микро­частиц — молекул, атомов, электронов. Универсальность тепловой энергии состоит в том, что любая форма энергии (механическая, химическая, элект­рическая, ядерная и т. п.) трансформируется в конечном счете частично или полностью в тепловое движение молекул (теплоту). Различные тела могут обмениваться внутренней энергией в форме теплоты, что количественно вы­ражается первым законом термодинамики.
Перенос энергии в форме теплоты происходит между телами с различной тем­пературой и называется теплообменом. Движущей силой любого процесса тепло­обмена является разность температур более нагретого и менее нагретого тел. Теп­лообмен — это самопроизвольный процесс переноса теплоты. Аппараты, в которых осуществляются тепловые процессы, называют теплообменниками.
Теплопередача — это перенос теплоты от более нагретой среды к менее нагретой через разделяющую их стенку. Оба вещества, участвующие в теп­лопередаче, называются теплоносителями (более нагретый — горячим, ме­нее нагретый — холодным).
В случае возможности смешения теплоносителей теплопередача осущест­вляется непосредственным соприкосновением, т. е. смешением обоих тепло­носителей. Очевидно, что в этом случае процесс теплопередачи протекает ин­тенсивнее. Аппаратурное оформление процесса значительно упрощается.
Исследования показывают, что теплопередача является сложным про­цессом. При изучении этот процесс расчленяют на простые явления. Разли­чают три элементарных способа переноса теплоты: теплопроводность, кон­векцию и тепловое излучение.
Теплопроводность представляет собой процесс молекулярного переноса теплоты в сплошной среде, обусловленный наличием градиента температу­ры. Теплопроводность в чистом виде, как правило, встречается в твердых телах. Так, в металлах перенос теплоты теплопроводностью связан с пере­мещением свободных электронов и колебаниями атомов кристаллической решетки.
Конвекция происходит только в газах и жидкостях и состоит в том, что перенос теплоты осуществляется перемещающимися в пространстве макро­скопическими объемами среды.
Тепловое излучение — это процесс переноса теплоты в виде электромаг­нитных волн с двойным взаимным превращением — тепловой энергии в лу­чистую и обратно.
В действительности элементарные виды теплообмена не обособлены и в чистом виде встречаются редко. В большинстве случаев теплота передается комбинированным (совокупным) путем. Например, обмен теплотой между твердой поверхностью и жидкостью (или газом) происходит с помощью теп­лопроводности и конвекции одновременно и называется конвективным теп­лообменом или теплоотдачей.
Совокупность всех трех видов переноса теплоты называется сложным теплообменом.
Теплоноситель — движущаяся среда (газ, пар, жидкость), ис­пользуемая для переноса теплоты.
В процессах теплопередачи участвует не менее двух сред (ве­ществ) с различными температурами. Среда с более высокой тем­пературой, отдающая при теплообмене теплоту, называется горя­чим теплоносителем, среда с более низкой температурой, воспри­нимающая теплоту, называется холодным теплоносителем (хлад­агентом). Теплоносители и хладагенты должны быть химически стойкими, не вызывать коррозии аппаратуры, не образовывать от­ложений на стенках аппаратов.
В качестве теплоносителей в пищевой промышленности наи­большее распространение получили насыщенный водяной пар, вода, дымовые газы, а в качестве хладагентов — аммиак, фреон, рассол хлорида кальция, воздух, азот. Выбор теплоносителя или хладагента определяется его назначением, температурами процесса, стоимостью.
Теплопередача между средами может происходить в установив­шихся (стационарных) и неустановившихся (нестационарных) условиях.
При установившемся (стационарном) процессе поле температур в аппарате не изменяется во времени. При неустановившемся (нестационарном) процессе температуры изменяются во времени. Установившиеся процессы протекают в непрерывно действующих аппаратах, неустановившиеся — в аппаратах периодического действия, а также при пуске и остановке аппаратов непрерывного действия и изменении режима их работы.
При тепловой обработке многих пищевых продуктов, напри­мер теста, молока, сахарных растворов, изменяются их физико-химические свойства, что вызывает, в свою очередь, изменение условий теплопередачи.
К основным кинетическим характеристикам процесса теплопередачи относятся средняя разность температур, коэффициент тел­епередачи, количество передаваемой теплоты (от этой величины зависят размеры теплообменной аппаратуры).
Зависимость между количеством передаваемой теплоты и пло­щадью поверхности теплообмена называется основным уравнением теплопередачи:
(1)

котopoe для установившегося процесса имеет вид
(2)

где dQ – количество переданной теплоты; К – коэффициент теплопередачи между средами; F – площадь поверхности теплообмена; Δtср – разность температур между средами – движущая сила процесса; dτ – продолжительность процесса.

Коэффициент теплопередачи показывает, какое количество теплоты (кДж) передается от одного теплоносителя другому через разделяющую стенку площадью 1м2 в течение 1 ч при разности температур между теплоносителями 1º.


Площадь поверхности теплообмена (теплопередачи) аппарата
(3)

Чтобы воспользоваться уравнением (3), необходимо знать количество переданной теплоты, которое определяется из теплового баланса, среднюю разность температур и коэффициент теп­лопередачи между средами.
Наибольшую трудность представляет расчет средней разности температур между теплоносителями, которая определяется по их начальным и конечным температурам и осложняется продольным перемешиванием теплоносителей, а также определение коэффи­циента теплопередачи, зависящего от режима движения теплоно­сителей, а также от условий протекания теплопередачи.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.