Дипломная работа по предмету "Технологии, материаловедение, стандартизация"


Эффект автодинного детектирования

ИССЛЕДОВАНИЕ ЭФФЕКТА АВТОДИННОГО ДЕТЕКТИРОВАНИЯ В МНОГОКОНТУРНОМ ГЕНЕРАТОРЕ НА ДИОДЕ ГАННА Введение.
В связи с развитием современных технологий, требующих непрерывного контроля за многими параметрами технологического процесса, состоянием оборудования и параметрами материалов и сред становится всё более актуальной задача создания неразрушающих бесконтактных методов измерения и контроля параметров материалов и сред. Измерения на СВЧ позволяют определить электропроводность, толщину, диэлектрическую проницаемость и другие параметры материалов и сред без разрушения поверхности образца, дают возможность автоматизировать контроль параметров материалов. Для этого в настоящее время широко используются методы, основанные на использовании эффекта автодинного детектирования в полупроводниковых приборах.
Применение эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах для контроля параметров материалов и структур основано на установлении зависимости величины продетектированного СВЧ-сигнала от параметров контролируемых величин: толщины, диэлектрической проницаемости, проводимости [1-6].
Однако, прежде чем создавать конкретный прибор на основе данного эффекта, необходимо провести моделирование его работы. Для этого необходимо рассмотреть принципы действия таких устройств.
При изменении уровня мощности СВЧ-излучения, воздействующего на полупроводниковые элементы с отрицательным сопротивлением, наблюдается изменение режима их работы по постоянному току, что можно понимать как проявление эффекта детектирования. В случае, если прибор с отрицательным сопротивлением является активным элементом СВЧ-генератора наблюдается эффект автодинного детектирования.
Одним из методов, позволяющих провести расчёт величины эффекта автодинного детектирования при реальных параметрах активного элемента и нагрузки, определить области значений контролируемых параметров материалов, в которых чувствительность автодина к их изменению максимальна, наметить пути оптимизации конструкции генератора, является метод, основанный на рассмотрении эквивалентной схемы СВЧ-генератора, в которой комплексная проводимость нагрузки определяется параметрами исследуемого материала и характеристиками электродинамической системы [7, 9].
Целью дипломной работы являлось исследование эффекта автодинного детектирования в многоконтурных СВЧ-генераторах на диоде Ганна для создания измерителей параметров материалов, вибрации и выявления особенностей их работы.
Анализ возможности использования автодинов на полупроводниковых активных СВЧ-элементах для контроля параметров материалов и сред.
При изменении уровня СВЧ-излучения, воздействующего на полупроводниковые элементы с отрицательным сопротивлением, наблюдается изменение постоянного тока, протекающего через них, что можно понимать как проявление эффекта детектирования [2, 7]. Если прибор с отрицательным сопротивлением является активным элементом СВЧ-генератора, этот эффект называют эффектом автодинного детектирования.
Исследование эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах позволило создать устройства, совмещающие несколько радиотехнических функций в одном элементе (например, излучение и приём электромагнитных колебаний). Автодины на полупроводниковых генераторах, получившие к настоящему времени достаточно широкое применение, используются в основном для обнаружения движущихся объектов.
Важной областью применения автодинов является контроль параметров материалов и сред. Применение эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах для контроля параметров материалов и сред основано на установлении зависимостей величины продетектированного СВЧ-сигнала от параметров контролируемых величин: диэлектрической проницаемости и проводимости. Измерения с помощью приборов основаны на сравнение с эталонами, а точность измерения в основном определяется точностью эталонирования. Теоретическое обоснование возможности использования эффекта автодинного детектирования в диодных СВЧ-генераторах для контроля параметров материалов и сред проведено на основе численного анализа. Описание отклика диодного СВЧ-автодина может быть сделано на основе рассмотрения эквивалентной схемы генератора (Рис. 1. 1), в которой комплексная проводимость Ynопределяется параметрами исследуемого материала и характеристиками электродинамической системы, а Yd - средняя проводимость полупроводникового прибора.
Рис. 1. Эквивалентная схема автодина на полупроводниковом диоде.
Эта эквивалентная схема может быть описана соотношением (1. 1), согласно первому закону Кирхгофа.
I1, U1- комплексные амплитуды тока и напряжения первой гармоники на полупроводниковом элементе. Т. к. к обеим проводимостям приложено одно и то же напряжениеU1, можно записать баланс мощностей:
т. е. Ydдолжна иметь отрицательную действительную часть при существовании в системе колебаний с ненулевой амплитудой. Наличие отрицательной проводимости характеризует трансформацию энергии: полупроводниковый элемент потребляет энергию постоянного тока и является источником колебаний ненулевой частоты. Возникновение СВЧ-колебаний в электрической схеме с нелинейным элементом вследствие его детектирующего действия приводит к появлению дополнительной составляющей постоянного тока, то есть возникает так называемый эффект автодинного детектирования [18]. Величина определяется из выражения
Детекторный эффект наблюдается в СВЧ-усилителях на биполярных транзисторах, СВЧ-генераторах на лавинно-пролётных диодах (ЛПД), инжекционно-пролётных диодах (ИПД), туннельных диодах (ТД) и диодах Ганна (ДГ). В данной работе мы рассмотрим использование полупроводниковых диодов в качестве СВЧ-автодинов. Сравнительные характеристики полупроводниковых СВЧ-диодов приведены в таблице 1. Таблица 1. Диод Мощность КПД Смещение Шумы ЛПД десятки ватт до 15% десятки Вольт 25 дБ ИПД десятки милливатт единицы % сотни милливольт около 5 дБ ДГ десятки милливатт - единицы Ватт зависит от режима работы 4. 5-11 Вольт 10-12 дБ ТД единицы и десятки микроватт единицы % сотни милливольт около 5 дБ
Процессы в полупроводниковых приборах описываются тремя основными уравнениями в частных производных [10]: уравнением плотности тока, характеризующим образование направленных потоков заряда; уравнением непрерывности, отражающим накопление и рассасывание подвижных носителей заряда, и уравнением Пуассона, описывающим электрические поля в полупроводнике.
Точное решение этих уравнений с учетом граничных условий в общем виде затруднительно даже на ЭВМ. Чтобы упростить анализ вводят эквивалентные схемы полупроводниковых приборов.
ТД представляют собой приборы, наиболее удобные для анализа, т. к. их эквивалентная схема более проста и точна, чем схемы других полупроводниковых приборов. С практической точки зрения ТД представляет собой интерес при создании маломощных автодинов в коротковолновой части сантиметрового диапазона.
ИПД (BARITT) обладает малой генерируемой мощностью [11], но из-за низкого уровня шумов и малого напряжения питания являются перспективными для допплеровских автодинов.
В работе [12] исследована возможность измерения диэлектрической проницаемости материалов по величине продетектированного работающем в режиме генерации ЛПД сигнала. Использовался генератор волноводной конструкции (канал волновода 23*10 мм. ) с ЛПД типа АА707, установленным в разрыве стержневого держателя. Измерения продетектированного сигнала проводилось компенсационным методом. Исследуемые диэлектрики, с предварительно определёнными значениями диэлектрической проницаемости на СВЧ, прикладывались к отверстию на выходном фланце генератора.
Результаты проведённых исследований показали, что ход зависимости величины продетектированного сигнала от диэлектрической проницаемости зависит от конструкции измерительного генератора, в частности, от расстояния от плоскости расположения ЛПД до открытого конца волновода, к которому прикладывается исследуемых диэлектрик.
ЛПД обеспечивает наибольшие КПД и мощность колебаний. Однако, , в качестве недостатка можно отметить относительно высокий уровень шумов, обусловленный, в первую очередь, шумами лавинообразования.
В ряде работ [2, 3, 17, 18] рассматривается возможность применения СВЧ-генераторов на диоде Ганна для измерения параметров материалов и сред. Отмечается преимущество данного способа измерения: исследуемый образец находится под воздействием СВЧ-мощности, а регистрация измерений производится на низкочастотной аппаратуре, имеющей высокую точность и отличающейся простой в эксплуатации.
В настоящее время разработаны и изготовлены устройства для неразрушающего контроля, принцип действия которых основан на эффекте автодинного детектирования: измерители толщины металлодиэлектрических структур и диэлектрической проницаемости [19, 20]. Наибольшее практическое применение из разработанных приборов нашёл СВЧ толщиномер типа СИТ-40. На рисунке 1. 2 приведена его блок-схема. Рис. 2. Блок-схема СВЧ измерителя толщины.
В состав СВЧ толщиномера СИТ-40, предназначенного для измерения тонких плёнок из любого металла на изолирующей подложке и непроводящих покрытиях, в том числе разнообразных лакокрасочных, нанесённых на металлические поверхности, входит: 1 - СВЧ-датчик, представляющий собой СВЧ-генератор в микрополосковом исполнении и использующий в качестве активного элемента диод Ганна или СВЧ биполярный транзистор; 2 - предварительный усилитель; 3 - блок питания; 4 - система корректировки нуля; 5 - блок индикации.
Для уменьшения влияния дрейфа нуля на результат измерений предложены схемные решения, основанные на компенсации дрейфа его параметров в промежутках между измерениями и использовании напряжения в момент, предшествующий измерению, в качестве опорного в момент измерения [21].
С целью повышения чувствительности и существенного уменьшения веса и потребляемой мощности измерителей исследовалась возможность применения туннельных диодов в качестве активных элементов СВЧ-автодинов [22]. Исследования проводились в экспериментальных измерительных СВЧ-устройствах на серийных диодах типа ГИ 103Б, работавших на частоте 1. 3 Ггц. В качестве детекторных диодов использовались диоды типа Д405. Конструктивно датчики измерительных устройств представляли собой отрезки полосковых линий передачи, выполненных на основе фольгированного фторопласта, в которых размещались генераторные и детекторные диоды, фильтры, НЧ и подстроечные элементы. Разработаны устройства измерения толщины и электропроводности проводящих покрытий, а также толщины и диэлектрической проницаемости для изолирующих материалов. Принцип действия автодинного генератора на полупроводниковом СВЧ-элементе был использован при разработке нового способа контроля толщины плёнок в процессе вакуумного напыления. Для повышения точности измерения в датчике применён СВЧ-выключатель, обеспечивающий кратковременное отклонение генератора от измеряемого объекта [23].
Разработан новый способ радиоволнового контроля вибраций, основанный на использовании двух полупроводниковых СВЧ-генераторов, работающих в режиме автодинного детектирования и обеспечивающих возможность определения не только амплитуды, но и частоты вибраций [24]. Источники зондирующего СВЧ-излучения и одновременно приёмники провзаимодействующего с вибрирующим объектом сигналов представляют собой отрезки стандартных прямоугольных волноводов, которые с одного конца закорочены и имеют регулируемые подстроечные поршни, а другие концы соединены с камерами, изготовленными из металлической ленты, свёрнутой в кольцо. Связь по СВЧ-полю отрезков волновода с каждой камерой осуществляется через прямоугольное волноводное окно. В камерах помещается цилиндрический металлический стержень, перемещение которого внутри этих камер вызывает изменение продетектированного автодинами зондирующего СВЧ-сигнала. Применение в автодинных генераторах диодов Ганна по сравнению с генераторами, использующими другие полупроводниковые активные элементы, позволяет обеспечить преимущества по совокупности таких параметров, как максимальная рабочая частота, выходная мощность, стабильность частоты, потребляемая мощность питания [13].
Экспериментальные исследования эффекта автодинного детектирования в многоконтурном генераторе на диоде Ганна.
Использование эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах позволяет создавать простые в эксплуатации малогабаритные измерители толщины и диэлектрической проницаемости [17, 18]. Для их нахождения используют результаты измерений на нескольких частотах. Осуществление многопараметрового контроля упрощается, если удаётся проводить измерения в условиях, когда на результаты измерений определяющим образом влияет только один из искомых параметров. Такая ситуация, в частности реализуется, если для измерения толщины и диэлектрической проницаемости диэлектриков в этом случае применяются измерители, работающие на различных частотных диапазонах, например СВЧ и НЧ. При проведении измерений на СВЧ результат зависит как от толщины, так и от диэлектрической проницаемости диэлектрика. Если измерения на НЧ проводить используя схему, в которой диэлектрик помещается в зазор между излучателем и металлическим основанием, то результат измерений будет определяться только толщиной диэлектрика и не будет зависеть от его диэлектрической проницаемости. Определив таким образом толщину диэлектрика, по её значению и показателям преобразователя на СВЧ можно определить диэлектрическую проницаемость. Было проведено экспериментальное исследование зависимости величины продетектированного сигнала в автодинном генераторе на диоде Ганна, работающем в различных частотных диапазонах от положения СВЧ короткозамыкающего поршня. Использовался генератор волноводной конструкции с диодом типа АА703, помещённым в разрыв металлического стержневого держателя. К цепи питания диода Ганна через разделительный конденсатор параллельно диоду был подключен низкочастотный контур. Частота СВЧ-колебаний составляла ~10 ГГц, частота низкочастотных колебаний ~10 МГц. Для детектирования низкочастотных колебаний использовался диод типа КД503А. Для контроля СВЧ-колебаний использовался измеритель мощности типа Я2М-66. Кроме того, в ходе экспериментальных исследований регистрировался постоянный ток, протекающий через диод Ганна, по падению напряжения на резисторе с сопротивлением порядка 1 Ом, включённом в цепь питания диода Ганна.
Схема экспериментальной установки приведена на рисунке 3. 1. Она включает в себя источник питания СВЧ-выключателя 1 для раздельного воздействия сигналами СВЧ и НЧ, источник питания диода Ганна 2, схему обработки информации и индикации 3, детекторный диод 4, разделительный конденсатор 5, СВЧ-выключатель 6, диод Ганна 7, конденсатор низкочастотного колебательного контура 8 и катушку индуктивности 9, располагающейся на поверхности выходного фланца волновода. В результате экспериментальных исследований было обнаружено, что в режиме многочастотной генерации изменение нагрузки в СВЧ-цепи (т. е. изменение положения короткозамыкающего поршня) приводит к изменению сигнала, продетектированному в НЧ-цепи, а изменение нагрузки в НЧ-цепи (т. е. изменение индуктивности или ёмкости) приводит к изменению сигнала в СВЧ-цепи. При этом изменения продетектированных в этих цепях сигналов могут быть как одинакового, так и противоположного знаков. Как следует из результатов, приведённых на Pис. 3. 2, зависимости величины продетектированных в НЧ- и СВЧ-цепях сигналовDUнч и DIсвчот перемещения короткозамыкающего поршня периодичны и имеют локальные максимумы и минимумы. На этом же рисунке приведена зависимость мощности выходного сигналаРCВЧ СВЧ- генератора на диоде Ганна от перемещения короткозамыкающего поршня.
Зависимости величины продетектированных в НЧ (1) и СВЧ (2) цепях сигналов и зависимость мощности выходного сигнала (3) от положения короткозамыкающего поршня. Приложение1. Эквивалентная схема автодина на диоде Ганна. Вольт-амперная характеристика диода Ганна.
Теоретические зависимости величин продетектированных сигналов в СВЧ DUfg (1) и НЧ DUkg (2) цепях.
Приложение2. Текст программы для моделирования процессов в многоконтурном генераторе на диоде Ганна.
{$A+, B-, D-, E-, F-, G-, I+, L+, N+, O-, P-, Q-, R-, S+, T-, V+, X+} program gist_f3; uses crt, graph, AN; label 1, 2; const n=15; q1=1. 6e-19; n123=1e21; c2=0. 03e-12; s123=1e-8; c3=0. 3e-12; mm1=0. 6; c4=0. 8e-12; Lg=1e-5; c5=10e-12; { отсечение НЧ цепи } Eb=4e5; c6=1e-6; T10=300. 0; c7=15e-12; r1=0. 01; l2=0. 2e-9; r3=1; l3=0. 6e-9; r4=0. 0005; l4=0. 01e-9; { крутим } r5=100; l5=100e-9; Eds=3. 8; l6=35e-9; l7=0. 12e-9; ll0=0. 03; {sm} llk=0. 046; maxpoint=1000000000; z0=39. 43e3; TypeFL=EXTENDED; Type ry=array[1...1100]of FL; Type tt=array[1...N]of FL; var sign, g1, sign1, sign2, sign3: ry; oldy1, oldy: array[1...10] of integer; K1, y, f, w: tt;
delta_i, frequency, old_f, old_cur, di, oldc1, oldc2, c1, l1,
sign0, d_visir, bn, iv1, iv11, iv12, x, h, vp1, smax, f0, s0, Vs, Vs1, y1, s1, ppp: FL; mark, count, fcount, point, deltax, fsign, gd, oldx, oldx1, dh, dj,
visir_1, visir_2, visir_3, visir_4, k, aaa, i, ii, iii, phas_x, phas_y: integer; round, fpoint, iii1, loop: longint; visir_f, visir_f1, visir_s, power, size_x, size_y: real; c: char; P: Pointer; Size: Word; s: string; Procedure current; var U: real; { BAX } begin Vs: =eds/(Eb*Lg); Vs1: =Vs*Vs*Vs; Vs: =(1+0. 265*Vs1/(1-T10*5. 3E-4))/(1+Vs1*Vs); Vs: =1. 3E7*Eds*Vs/T10; if y[3] if y[3]>3. 6 then u: =y[3]+2 else begin if f[3]>0 then u: =y[3] else u: =y[3]+2; end; iv12: =sqr(sqr(u/eb/Lg)); iv11: =mm1*u/Lg+vs*iv12; iv1: =q1*n123*s123*iv11/(1+iv12); end; procedure kzp; { КЗП } var ll2: FL; begin l1: =0. 2e-9; c1: =0. 1e-12; llv: =ll0/sqrt(1-sqr(ll0/llk)); z: =z0*Sin(6. 28*lll/llv)/Cos(6. 28*lll/llv); if z ll2: =abs(z)/6. 28e10; l1: =l1*ll2/(l1+ll2); end else c1: =c1+1/(z*6. 28e10); } end; Procedure anna(y: tt; var f1: tt); begin current; f[1]: =(y[6]-y[7]-y[12])/c5; { Uag } f[2]: =(y[7]-y[8]-y[9])/c4; { Ubg } f[3]: =(y[8]-iv1)/c3; { Ucc'} f[4]: =(y[9]-y[4]*r1-y[10])/c1; { Udg } f[5]: =0; { Ueg } f[6]: =(eds-y[1]-y[6]*r4)/l1; { i1 } f[7]: =(y[1]-y[2])/l4; { i2 } f[8]: =(y[2]-y[3]-y[8]*r3)/l3; { i7 } f[9]: =(y[2]-y[11]-y[4])/l2; { i6 } f[10]: =y[4]/l1; { iL1 } f[11]: =y[9]/c2; { Uc2 } f[12]: =(y[1]-y[13]-y[14])/L7; { i3' } f[13]: =y[12]/c6; { Uc6 } f[14]: =(y[12]-y[15]-y[14]/r5)/c7; { Ukg } f[15]: =y[14]/L6; { iL6 } end; procedure an2; { spector } begin XMIN: =0; XMAX: =40; YMIN: =0; YMAX: =100; YGMIN: =25; YGMAX: =200; XGMIN: =350; XGMAX: =630; nx: =4; ny: =5; setcolor(7); OutTextxy(XGMIN, YGMIN-10, 'Спектр тока на диоде'); OutTextxy(XGMAX-50, YGMAX+20, 'f, GHz. '); setcolor(15); moveto(xgmin, ygmax); end; procedure an3; { u, i } begin XMIN: =0; XMAX: =4; YMIN: =-4; YMAX: =10; YGMIN: =240; YGMAX: =420; XGMIN: =50; XGMAX: =630; nx: =8; ny: =7; setcolor(7); OutTextxy(XGMIN, YGMIN-10, 'i7-green, Uag-magenta'); OutTextxy(XGMAX-50, YGMAX+20, 't, ns. '); setcolor(15); end; procedure an4; { phasa i7 } begin XMIN: =-4; XMAX: =8; YMIN: =-15; YMAX: =5; YGMIN: =25; YGMAX: =200; XGMIN: =50; XGMAX: =320; nx: =1; ny: =1; setcolor(7);
OutTextxy(XGMIN, YGMIN-10, 'di7/dt Фаз. портрет тока на диоде'); OutTextxy(XGMAX-50, YGMAX+20, 'i7'); setcolor(15); end; procedure Result; { вычисление и вывод отношения частот } begin if (visir_f>=visir_f1) then begin if (visir_f10) then begin setcolor(0); outtextxy(540, 75, '___________'); setcolor(13); line(540, 70, 620, 70); str((visir_f/visir_f1): 5: 3, s); outtextxy(540, 75, s); end; end else begin if (visir_f0) then begin setcolor(0); outtextxy(540, 75, '___________'); setcolor(13); str((visir_f1/visir_f): 5: 3, s); outtextxy(540, 75, s); end; end; end; procedure v12; { вывод информации физиров 1 и 2 } begin
d_visir: =1e-9*abs(visir_2-visir_1)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540, 255, '___________'); outtextxy(540, 35, '___________'); setcolor(15); if(d_visir0) then begin an2; line(trunc(visir_s), ygmin, trunc(visir_s), ygmax);
visir_s: =xgmax-trunc((xmax-1/(d_visir*1e9))*(xgmax-xgmin)/(xmax-xmin)); line(trunc(visir_s), ygmin, trunc(visir_s), ygmax); str((1e-9/d_visir): 5: 3, s); outtextxy(540, 35, s+' GHz'); end; str(d_visir*1e9: 5: 4, s); outtextxy(540, 255, s+' ns'); end; BEGIN oldc1: =0; oldc2: =0; gd: =0; InitGraph(gd, gm, 'E: \tp-7\bgi'); an2; scal; an4; scal; an3; scal; setcolor(11); current; kzp; { Начальные условия } dh: =4; dj: =2; x: =0; h: =8e-13; y[1]: =eds; w[1]: =eds; y[3]: =eds; y[6]: =iv1; w[3]: =eds; w[6]: =iv1; y[2]: =eds; y[7]: =iv1; w[2]: =eds; w[7]: =iv1; y[5]: =eds; y[8]: =iv1; w[5]: =eds; w[8]: =iv1; y[4]: =eds; y[6]: =iv1; w[4]: =eds; w[6]: =iv1; y[11]: =eds; y[10]: =0; y[9]: =iv1; w[9]: =iv1; w[11]: =eds; w[10]: =0; y[12]: =0; w[12]: =y[12]; y[13]: =eds; w[13]: =y[13]; y[14]: =0; w[14]: =y[14]; y[15]: =0; w[15]: =y[15]; loop: =1; { номеp pазвеpтки тока } phas_x: =0; phas_y: =0; { сдвиг фазового поpтpета } size_x: =1; size_y: =1; { масштаб фазового портрета } an2; visir_s: =800; visir_3: =xgmin; visir_f: =0; visir_4: =xgmin; visir_f1: =0; an3; visir_1: =xgmin; visir_2: =xgmin; { визиры } count: =1; mark: =0; round: =0; old_cur: =iv1; fcount: =0; fsign: =1; fpoint: =1; frequency: =1e10; old_f: =1e10; Smax: =0; power: =0; oldx: =xgmax-trunc((xmax-0)*(xgmax-xgmin)/(xmax-xmin)); for aaa: =1 to 10 do
oldy[aaa]: =ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); { Рунге-Кутт } for iii1: =-249 to maxpoint do begin for iii: =0 to 4 do begin anna(y, f); for k: =1 to n do begin K1[k]: =f[k]*h; y[k]: =w[k]+h*f[k]/2; end; x: =x+h/2; anna(y, f); for k: =1 to n do begin K1[k]: =K1[k]+2*f[k]*h; y[k]: =w[k]+f[k]*h/2; end; anna(y, f); for k: =1 to n do begin K1[k]: =K1[k]+2*f[k]*h; y[k]: =w[k]+f[k]*h; end; x: =x+h/2; anna(y, f); for k: =1 to n do begin y[k]: =w[k]+(K1[k]+f[k]*h)/6; w[k]: =y[k]; end; end; { вычисление мощности } power: =power+y[8]*y[2]; { вычисление частоты по изменению знака производной } if fsign > 0 then begin if y[8]-old_cur if fcount = 0 then fpoint: =iii1; fcount: =fcount+1; fsign: =-1; end; end else begin if y[8]-old_cur >= 0 then begin if fcount = 0 then fpoint: =iii1; fcount: =fcount+1; fsign: =1; end; end; old_cur: =y[8]; if fcount = 15 then begin { Частота сигнала } fcount: =1; mark: =1; old_f: =frequency; frequency: =(iii1-fpoint)/(h*4. 2e3 * 5); fpoint: =iii1; power: =power *h*frequency/5; str(power: 5: 4, s); power: =0; setcolor(0); outtextxy(250, 460, ' '); setcolor(11); outtextxy(250, 460, 'Puhf = '+s+' W'); end; { вывод графиков токов и напряжений } if(iii1>0) then begin an3; if(iii1=loop*1000) then begin loop: =loop+1; setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); scal; setwritemode(XORput); setcolor(15); line(visir_1, ygmin, visir_1, ygmax); line(visir_2, ygmin, visir_2, ygmax); setwritemode(COPYput); str(d_visir*1e9: 5: 4, s); outtextxy(540, 255, s+' ns'); round: =round+1; setcolor(0); outtextxy(50, 460, ' '); str(round*4: 6, s); setcolor(11); outtextxy(50, 460, 'time = '+s+' ns+'); oldx: =xgmax-trunc((xmax-0)*(xgmax-xgmin)/(xmax-xmin)); for aaa: =1 to 10 do
oldy[aaa]: =ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); end; bn: =x*1e9; y1: =y[1]-1; xg: =xgmax-trunc((xmax-bn)*(xgmax-xgmin)/(xmax-xmin)); xg: =xg-145-580*(loop-1); yg: =ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); setcolor(10); line(oldx, oldy[1], xg, yg);
oldy[1]: =ygmin-trunc((ymax-y[8]*10)*(ygmin-ygmax)/(ymax-ymin));
{ yg: =ygmin-trunc((ymax-frequency/1e10)*(ygmin-ygmax)/(ymax-ymin)); setcolor(14); line(oldx, oldy[2], xg, yg);
oldy[2]: =ygmin-trunc((ymax-frequency/1e10)*(ygmin-ygmax)/(ymax-ymin)); } yg: =ygmin-trunc((ymax-y1)*(ygmin-ygmax)/(ymax-ymin)); setcolor(13); line(oldx, oldy[3], xg, yg); oldy[3]: =ygmin-trunc((ymax-y1)*(ygmin-ygmax)/(ymax-ymin)); oldx: =xg; end; { phas. portret } if(iii1>0) then begin an4; di: =(y[8]-oldc1)*50*size_y; yg: =ygmax-trunc((ymax-di)*(ygmax-ygmin)/(ymax-ymin));
xg: =xgmin-trunc((xmax-y[8]*15*size_x)*(xgmin-xgmax)/(xmax-xmin)); putpixel(xg+phas_x, yg+phas_y, 10); oldc1: =y[8]; if(iii1 Smax: =Smax+y[8]; sign[iii1]: =y[8]; end else begin Smax: =Smax-sign[1]+y[8]; for i: =1 to 499 do begin sign[i]: =sign[i+1]; end; sign[500]: =y[8]; end; end; if(iii1>249) then begin { control circle } if (mark=1) then begin mark: =0; setcolor(14); circle(xg+phas_x, yg+phas_y, 3); setcolor(10); end; end; { управление экраном } if keypressed=true then begin c: =readkey; case c of { пеpемещение фаз. поpepета } '1': begin an4; setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); end; '4': begin phas_x: =phas_x-10; an4; Size : = ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); PutImage(xgmin+1-10, ygmin+1, P^, NormalPut); FreeMem(P, Size); scal; end; '6': begin phas_x: =phas_x+10; an4; Size : = ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); PutImage(xgmin+1+10, ygmin+1, P^, NormalPut); FreeMem(P, Size); scal; end; '2': begin phas_y: =phas_y+10; an4; Size : = ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); PutImage(xgmin+1, ygmin+1+10, P^, NormalPut); FreeMem(P, Size); scal; end; '8': begin phas_y: =phas_y-10; an4; Size : = ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1); GetMem(P, Size); GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); PutImage(xgmin+1, ygmin+1-10, P^, NormalPut); FreeMem(P, Size); scal; end; { пеpеход на вычисление спектpа } 's': begin goto 1; end; { масштаб фаз. поpтpета } '+': begin an4; setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); size_x: =size_x+0. 1; size_y: =size_y+0. 1; end; '-': begin an4; setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); size_x: =size_x-0. 1; size_y: =size_y-0. 1; end; end; 2: end; end; { спектр } 1: SETCOLOR(15); an2; f0: =0; Smax: =0; sign0: =0; setcolor(15); for k: =1 to 200 do begin s0: =0; s1: =0; FOR i: =1 to 500 do begin s0: =s0+(sign[i]-sign0)*cos(f0*i*6. 28e-9/250); s1: =s1+(sign[i]-sign0)*sin(f0*i*6. 28e-9/250); end; if k=1 then begin sign0: =s0/500; s0: =0; end; f0: =f0+2e8; g1[k]: =s0*s0+s1*s1; if g1[k]>Smax then Smax: =g1[k]; end; ppp: =s0*s0+s1*s1; f0: =0; { очистка поля и перерисовка визиров и цифр } setfillstyle(0, 0); bar(xgmin+1, ygmin+1, xgmax-1, ygmax-1); scal; setwritemode(XORput); if(d_visir0) then begin line(trunc(visir_s), ygmin, trunc(visir_s), ygmax); str((1e-9/d_visir): 5: 3, s); outtextxy(540, 35, s+' GHz'); end; line(visir_3, ygmin, visir_3, ygmax); setcolor(14); line(visir_4, ygmin, visir_4, ygmax); setwritemode(COPYput); setcolor(11); str(visir_f: 5: 3, s); outtextxy(540, 50, s+' GHz'); setcolor(14); str(visir_f1: 5: 3, s); outtextxy(540, 60, s+' GHz'); Result; { рисование спектра } moveto(xgmin, ygmax); setcolor(10); for k: =1 to 200 do begin xg: =xgmax-trunc((xmax-f0/1e9)*(xgmax-xgmin)/(xmax-xmin));
yg: =ygmin-trunc((ymax-100*g1[k]/SMAX)*(ygmin-ygmax)/(ymax-ymin)); lineto(xg, yg); f0: =f0+2e8; end; { конец спектра } repeat c: =readkey; case c of { перемещение визиров } '9': begin an3; setwritemode(XORput); setcolor(15); line(visir_1, ygmin, visir_1, ygmax); visir_1: =visir_1+1; line(visir_1, ygmin, visir_1, ygmax); v12; setwritemode(COPYput); end; '7': begin an3; setwritemode(XORput); setcolor(15); line(visir_1, ygmin, visir_1, ygmax); visir_1: =visir_1-1; line(visir_1, ygmin, visir_1, ygmax); v12; setwritemode(COPYput); end; '6': begin an3; setwritemode(XORput); setcolor(15); line(visir_2, ygmin, visir_2, ygmax); visir_2: =visir_2+1; line(visir_2, ygmin, visir_2, ygmax); v12; setwritemode(COPYput); end; '4': begin an3; setwritemode(XORput); setcolor(15); line(visir_2, ygmin, visir_2, ygmax); visir_2: =visir_2-1; line(visir_2, ygmin, visir_2, ygmax); v12; setwritemode(COPYput); end; '3': begin an2; setwritemode(XORput); setcolor(11); line(visir_3, ygmin, visir_3, ygmax); visir_3: =visir_3+1; line(visir_3, ygmin, visir_3, ygmax); visir_f: =(visir_3-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540, 50, '___________'); setcolor(11); str(visir_f: 5: 3, s); outtextxy(540, 50, s+' GHz'); setwritemode(COPYput); Result; end; '1': begin an2; setwritemode(XORput); setcolor(11); line(visir_3, ygmin, visir_3, ygmax); visir_3: =visir_3-1; line(visir_3, ygmin, visir_3, ygmax); visir_f: =(visir_3-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540, 50, '___________'); setcolor(11); str(visir_f: 5: 3, s); outtextxy(540, 50, s+' GHz'); setwritemode(COPYput); Result; end; '. ': begin an2; setwritemode(XORput); setcolor(14); line(visir_4, ygmin, visir_4, ygmax); visir_4: =visir_4+1; line(visir_4, ygmin, visir_4, ygmax); visir_f1: =(visir_4-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540, 60, '___________'); setcolor(14); str(visir_f1: 5: 3, s); outtextxy(540, 60, s+' GHz'); setwritemode(COPYput); Result; end; '0': begin an2; setwritemode(XORput); setcolor(14); line(visir_4, ygmin, visir_4, ygmax); visir_4: =visir_4-1; line(visir_4, ygmin, visir_4, ygmax); visir_f1: =(visir_4-xgmin)*(xmax-xmin)/(xgmax-xgmin); setcolor(0); outtextxy(540, 60, '___________'); setcolor(14); str(visir_f1: 5: 3, s); outtextxy(540, 60, s+' GHz'); setwritemode(COPYput); Result; end; ' ': begin goto 2; end; end; until (c='q'); end. { -= EOF =- }
В заключении хочу выразить благодарность доценту кафедры физики твёрдого тела Саратовского госуниверситета Скрипалю Александру Владимировичу и аспиранту той же кафедры Бабаяну Андрею Владимировичу за оказанную помощь и внимательное отношение к выполнению дипломной работы.


Не сдавайте скачаную работу преподавателю!
Данную дипломную работу Вы можете использовать как базу для самостоятельного написания выпускного проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем дипломную работу самостоятельно:
! Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы.
! Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов.
! Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания.
! Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться.
! Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы.
! Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей.

Особенности дипломных работ:
по экономике Для студентов экономических специальностей.
по праву Для студентов юридических специальностей.
по педагогике Для студентов педагогических специальностей.
по психологии Для студентов специальностей связанных с психологией.
технических дипломов Для студентов технических специальностей.

Виды дипломных работ:
выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института.
магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения.

Другие популярные дипломные работы:

Дипломная работа Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби"
Дипломная работа Технологии работы социального педагога с многодетной семьей
Дипломная работа Человеко-машинный интерфейс, разработка эргономичного интерфейса
Дипломная работа Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края
Дипломная работа Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия
Дипломная работа Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС"
Дипломная работа Разработка системы менеджмента качества на предприятии
Дипломная работа Организация учета и контроля на предприятиях жилищно-коммунального хозяйства
Дипломная работа ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ»
Дипломная работа Психическая коммуникация

Сейчас смотрят :

Дипломная работа Психологические особенности влияния руководителя на подчиненных
Дипломная работа Религиозный туризм
Дипломная работа Управление финансовым состоянием предприятия (на примере ООО Торговый дом "Добрыня")
Дипломная работа Управление капиталом предприятия
Дипломная работа Разработка мероприятий по совершенствованию инновационной деятельности ООО "Лизинг-Инвест"
Дипломная работа Анализ управления предприятием на примере кондитерской фабрики
Дипломная работа Анализ особенностей содержания и организации социальной работы с молодежью на предприятии
Дипломная работа Управление денежными потоками на предприятии
Дипломная работа Эффективность деятельности современного транспортного предприятия
Дипломная работа Вивчення молодшими школярами рослин на уроках природознавства в 3 класі
Дипломная работа Разработка модуля сайта преподавателя по дисциплине Интернет-технологии
Дипломная работа Управление финансовой деятельностью предприятия: анализ и пути улучшения (на примере УП "Проектстрой" ОО "Белои")
Дипломная работа Направления повышения производительность труда в современных условиях (на примере РУП "Белтелеком")
Дипломная работа Использование информационных технологий на уроках истории в школе
Дипломная работа Оценка и анализ производственной деятельности предприятия