МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение Образования
«ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Ф. СКОРИНЫ»
Математический факультет
Кафедра алгебры и геометрии
Допущена к защите
Зав. кафедрой_________________Л.А. Шеметков
"____"________________200___г.
Частично насыщенные формации с заданной структурой подформаций
Дипломная работа
Исполнитель
студент группы М-52 ____________ Рябченко Алексей Иванович
Научный руководитель
К.ф.-м.н., доцент _____________ Сафонов Василий Григорьевич
Рецензент
К.ф.-м.н, доцент _____________ Васильева Тамара Ивановна
ГОМЕЛЬ 2005
Оглавление
Спутники формаций
В работе рассматриваются только конечные группы. Используются определения и обозначения, принятые в книгах -- и работе .
Напомним, что через обозначают множество всех простых чисел. Пусть --- некоторое непустое множество простых чисел. --- дополнение к во множестве простых чисел, т.е. . Через обозначают множество всех различных простых делителей натурального числа , а через --- множество всех простых делителей порядка группы , т.е. . Полагают также, что . Натуральное число называется -числом, если . Группа называется -группой, если ее порядок есть -число.
Определение. Формация --- это класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений, т.е. --- формация, если
1) и следует, что ;
2) и следует, что .
Напомним, что если --- произвольный непустой класс групп, то через обозначают пересечение всех формаций, содержащих .
Определение. Пусть --- непустое множество простых чисел. Всякую функцию вида
называют -локальным спутником. При этом запись означает множество .
Для произвольного класса групп символом обозначают пересечение всех таких нормальных подгрупп , что , а символом обозначают произведение всех нормальных -подгрупп группы .
Пусть --- класс всех тех групп, у которых каждый композиционный фактор является -группой.
Полагают, , .
Через обозначают наибольшую нормальную -подгруппу группы .
Лемма. Пусть --- нормальная подгруппа группы .
1. Если --- -группа, то .
2. Если , то .
Для произвольного -локального спутника
Лемма. Пусть , где и . Тогда либо , либо найдется такое число , что .
Доказательство. Пусть и для всех . Первое соотношение влечет . Пусть . Тогда и . Значит, для всех имеет место включение . Следовательно, . Полученное противоречие доказывает лемму.
Определение. Если формация такова, что , то говорят, что является -локальной, а --- ее -локальный спутник. Если при этом все значения таковы, что для любого , то называется внутренним -локальным спутником.
Пример. Пусть --- формация, содержащаяся в , и --- такой -локальный спутник, что и для любого . Тогда, очевидно, . Таким образом, всякая подформация формации является -локальной. Отсюда, в частности, следует, что пустая формация и формация единичных групп являются -локальными для всех .
Определение. Насыщенной называют такую формацию , что для любой группы с всегда следует .
Определение. Формацию называют -, если ей принадлежит всякая группа , для которой , где . В частности, если , то -насыщенные формации называют -насыщенными.
Определение. Пусть --- произвольная совокупность групп, --- некоторое простое число. Полагают
Пусть и --- некоторые -насыщенные формации. Тогда через обозначают класс групп, равный .
Вместо пишут .
Следующая теорема для -локальных формаций является аналогом известной теоремы Гашюца--Любезедер--Шмида , , .
Теорема. Пусть --- формация. Тогда следующие утверждения эквивалентны:
Формация -насыщенная;
для всех ;
, где и для всех ;
Формация -локальна.
Доказательство. Импликация доказана в работе . Пусть выполняется условие 2) и Включение очевидно. Предположим, что обратное включение неверно и --- группа минимального порядка из с минимальной нормальной подгруппой . Если --- -группа, то . Значит
противоречие. Следовательно, . Пусть . Если --- неабелева группа, то Поэтому
что противоречит выбору группы . Значит, --- -группа. Ввиду теоремы работы формация является -насыщенной, откуда вытекает, что , т.е. . Тогда и, следовательно,
Полученное противоречие показывает, что . Таким образом, .
Предположим теперь выполнимость условия и допустим, что формация не является -насыщенной. Тогда найдется такое число и такая группа с нормальной подгруппой , что , но . Поскольку
для простых и , получаем
и
для всех . Следовательно, . Полученное противоречие завершает доказательство теоремы.
Пусть --- произвольный набор -локальных спутников. Через обозначают такой -локальный спутник , что для всех .
Если для всех , то полагают, что .
Лемма. Пусть , где . Тогда , где .
Доказательство. Пусть выполнены условия леммы, т.е. , где и пусть . Тогда по условию . Следовательно, для любого . Но, так как для всех имеет место , то для всех и . Тогда всех и . Таким образом получаем, что . Лемма доказана.
Определение. Пусть такая совокупность формаций, что либо , либо , где , . Такую совокупность формаций называют цепью формаций.
Определение. Цепью -локальных спутников называют такую совокупность -локальных спутников , что либо ,либо , где , .
Лемма. Пусть --- цепь формаций, --- такая цепь -локальных спутников, что и для всех имеет место в точности тогда, когда для всех . Тогда , где для каждого .
Доказательство. Пусть --- цепь формаций и --- такая цепь -локальных спутников, что , причем для всех выполнено в точности тогда, когда для любого .
Пусть . Т.е. существует номер такой, что . Следовательно, для любого и . Тогда
для любого и
Это означает, что .
Пусть теперь . Следовательно,
для любого и
Тогда существует такой номер , что для любого и . Тогда получаем, что . Следовательно, . Лемма доказана.
Лемма. Если = и , для некоторого , то .
Доказательство. Прежде заметим, что поскольку , то . А поскольку и для всех имеет место
то и . Значит, . Лемма доказана.
Определение. Непустое множество формаций называют полурешеткой формаций, если пересечение любого множества из снова принадлежит .
Определение. Пусть --- формация, имеющая -локальный спутник . Если является минимальным (максимальным) элементом множества всех -локальных спутников формации , то называют минимальным (соответственно максимальным) -локальным спутником формации .
Пусть --- полурешетка формаций. Если формация обладает -локальным спутником , то формация обладает -локальным спутником . Значит, множество всех тех формаций, которые имеют хотя бы один -локальный спутник, является полурешеткой формаций.
Пусть --- некоторый класс групп. Через обозначают пересечение всех тех -насыщенных формаций, которые содержат , т.е. --- наименьшая -насыщенная формация, содержащая формацию . В частности, если , то пишут form.
Теорема. Если и --- минимальный -локальный спутник формации , то справедливы следующие утверждения:
1) ;
2) для всех ;
3) и --- некоторый фиксированный элемент из , то , где для всех ,
и, кроме того, ;
4) , где и для всех
Из теоремы и леммы непосредственно вытекает
Следствие. Пусть и --- минимальные -локальные спутники формаций и соответственно. Тогда в том и только в том случае, когда .
Определение. Пусть --- -насыщенная формация. -Локальный спутник формации называется каноническим, если и для всех .
Замечание 1. Согласно теореме всякая -локальная формация имеет -локальный спутник , который является каноническим. Такие спутники обозначают большими латинскими буквами.
Ясно, что если и --- произвольный внутренний -локальный спутник формации , то ввиду леммы .
Если формация , то для всех .
Из следствия теоремы следует
Лемма. Пусть и . Тогда в том и только в том случае, когда .
Определение. Через , обозначают такие -локальные спутники и соответственно, что и для любого .
Лемма. Пусть --- минимальный -локальный спутник формации , где . Тогда --- минимальный -локальный спутник формации
Доказательство. Пусть .
И пусть , а --- минимальный -локальный спутник формации . Тогда, если , то для любого имеет место . Значит, . Понятно также, что .
Пусть . Тогда найдется такое , что . Значит, согласно теореме , имеет место
Лемма доказана.
Решетка -насыщенных формаций
Результаты и методы общей теории решеток широко используются в различных областях современной математики. Наиболее широк диапазон применения этой теории в общей алгебре. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скибой было показано , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. Следует отметить, что существенную роль играет тот факт, что решетки всех формаций и всех насыщенных формаций модулярны . Эти результаты позволили широко использовать элементы общей теории решеток в вопросах изучения и классификации формаций групп. Широкий спектр применений решеточных конструкций при исследовании формаций представлен в монографии А.Н.Скибы , где, в частности, показано, что привлечение общей теории решеток при исследовании классов групп позволяет не только с успехом решать открытые вопросы, но и значительно упрощать доказательства многих уже известных теорем. Таким образом, дальнейшее развитие решеточных методов в теории классов алгебраических систем является актуальной задачей.
Напомним, что решеткой называется частично упорядоченное множество, в котором для любых двух элементов существует как наибольший, так и наименьший элементы.
Через обозначают множество всех -насыщенных формаций.
Если две -насыщенные формации и такие, что , то полагают, что . Относительно вхождения формаций друг в друга множество -насыщенных формаций является частично упорядоченным.
Для любых двух -насыщенных формаций и полагают
Определение. Непустую совокупность формаций называют полной решеткой формаций, если пересечение любой совокупности формаций из снова принадлежит
и во множестве имеется такая формация , что для любой формации .
Лемма. Частично упорядоченное множество с наибольшим элементом является полной решеткой, если в нем любая непустая совокупность элементов обладает нижней гранью.
Лемма. Множество всех -насыщенных формаций образует полную решетку.
Доказательство. Частичным порядком на является вхождение формаций друг в друга. Множество всех -насыщенных формаций замкнуто относительно операций и , так как объединение и пересечение -насыщенных формаций снова является -насыщенной формацией. Таким образом, является решеткой.
В качестве наибольшего элемента в выступает --- формация всех групп. Так как пересечение любой совокупности -насыщенных формаций снова будет -насыщенной формацией, то по лемме --- полная решетка. Лемма доказана.
Лемма. Пусть --- монолитическая группа с неабелевым монолитом, --- некоторая полуформация и . Тогда .
Лемма. Пусть --- полуформация и . Тогда если , то , где
Лемма. Пусть --- такой внутренний -локальный спутник формации , что , где . Тогда
где .
Определение. Пусть L --- полная решетка и . Элемент называют компактным в , если из условия следует, что для некоторого конечного подмножества , т.е., иначе --- компактный элемент в , если из любого его покрытия можно выделить конечное подпокрытие.
Определение. Полная решетка называется алгебраической, если любой ее элемент является решеточным объединением компактных элементов.
Определение. Атомом решетки называют наименьший ненулевой элемент, т.е. , то в не существует такого, что .
Определение. Пусть --- произвольный -локальный спутник. Символом обозначают класс групп
Если для формации выполнено равенство , то говорят, что --- -локальный -спутник формации .
Минимальным -локальным -спутником формации называют ее -локальный -спутник со следующими значениями:
Лемма. Пусть --- минимальный -локальный -спутник формации , . Тогда включение имеет место в том и только том случае, когда .
Лемма. Пусть --- минимальный -локальный -спутник формации , . Тогда --- минимальный -локальный -спутник формации .
Теорема. Решетка всех -насыщенных формаций является алгебраической.
Доказательство. По лемме является полной решеткой. Поскольку каждая -насыщенная формация, очевидно, является решеточным объединением своих однопорожденных -насыщенных формаций, то для доказательства теоремы достаточно показать, что каждая однопорожденная -насыщенная формация является компактным элементом в .
Пусть --- некоторая однопорожденная -насыщенная формация, --- -насыщенная формация, содержащая , где --- -насыщенная формация, .
Пусть --- минимальный -локальный -спутник формации , --- минимальный -локальный -спутник формации , --- минимальный -локальный -спутник формации . Согласно определению минимального -локального -спутника формации
для всех и
Ввиду леммы . Согласно лемме
Ввиду алгебраичности решетки всех формаций (см. ) для каждого фиксированного существует конечное число индексов () таких, что
И существует набор индексов ,..., таких, что
Тогда . Таким образом
Итак, решетка всех -насыщенных формаций алгебраична, и ее компактными элементами являются однопорожденные -насыщенные формации. Теорема доказана.
Следствие 1. Решетка всех -насыщенных формаций является алгебраической.
Следствие 2. Решетка всех насыщенных формаций является алгебраической.
Определение. Решетка называется модулярной, если для любых элементов , , решетки таких, что выполняется .
Теорема. Решетка всех -насыщенных формаций модулярна.
Доказательство. Пусть , , --- -насыщенные формации и кроме этого . Покажем, что
Рассмотрим такие -локальные спутники , что и при всех , где . Ввиду теоремы справедливо равенство . Пусть . По лемме имеем
Из леммы вытекает, что --- внутренний -локальный спутник формации .
Понятно, что при всех . Значит, при всех имеет место равенство
Следовательно, . Но --- внутренний -локальный спутник формации . Значит, согласно теореме , получаем
откуда следует требуемое равенство. Теорема доказана.
Следствие 1. всех -насыщенных формаций модулярна.
Следствие 2. всех насыщенных формаций модулярна.
Лемма. Подрешетка модулярной решетки модулярна.
Решетка внутренних -локальных спутников формации
Пусть --- некоторая -насыщенная формация. Обозначим через --- множество всех внутренних -локальных спутников формации .
Теорема. Пусть непустая -насыщенная формация. Тогда имеют место следующие утверждения:
1) множество c операциями и образует полную решетку;
2) решетка является модулярной.
Доказательство. 1) Относительно операции множество является частично упорядоченным. Кроме этого для любых двух -локальных спутников и по лемме существуют такие -локальные спутники и , что и , т.е. для любых двух -локальных спутников из существует как наибольший, так и наименьший элементы. Следовательно, является решеткой.
Покажем, что является полной решеткой. Так как формация -насыщена, то по теореме у формации имеется такой -локальный спутник , что и для всех . Этот -локальный спутник является каноническим. По определению канонического спутника получаем, что для любого выполнено включение .
Применяя лемму , получаем, что для любой непустой совокупности внутренних -локальных спутников формации из существует наименьший элемент, равный пересечению этих -локальных спутников. При этом этот элемент является точной нижней гранью. По лемме получаем, что является полной решеткой.
2) Пусть --- внутренние -локальные спутники формации , причем , т.е. для любого .
Покажем, что выполнено Возьмем произвольное из . Тогда , и --- являются некоторыми формациями, причем все эти формации содержатся в формации . По теореме и лемме получаем, что для любого , в силу модулярности решетки всех формаций, выполнено равенство
Но тогда
Таким образом, является модулярной решеткой. Теорема доказана.
-НАСЫЩЕННЫЕ ФОРМАЦИИ С ОГРАНИЧЕННЫМ -ДЕФЕКТОМ
Пусть и --- некоторые -насыщенные формации, причем формация хорошо изучена. Тогда у нас имеется некоторая информация и относительно формации , поскольку в ней содержится часть формации , а именно . Так, например, при изучении насыщенной формации часто используют ее подформацию , где --- некоторая формация классического типа. Напомним, что формация называется формацией классического типа, если она имеет такой локальный спутник, все неабелевы значения которого насыщены. Однако, в общем случае без дополнительных ограничений на "хорошо известную часть" формации что-либо сказать о самой формации трудно. В качестве одного из возможных ограничений на можно, например, рассматривать ограничения, накладываемые на решетку -насыщенных формаций , заключенных между и (-насыщенная формация принадлежит тогда и только тогда, когда ). Очевидно, что --- это наименьший, а --- наибольший элементы -насыщенной решетки
Понятие -дефекта
Определение. Для любых двух -насыщенных формаций и , где , через обозначают длину решетки -насыщенных формаций, заключенных между и .
Определение. Пусть и --- произвольные -насыщенные формации. Тогда, если решетка имеет конечную длину , то говорят, что -дефект формации конечен и равен . Если же длина этой решетки бесконечна, то говорят, что -дефект формации --- бесконечен и пишут .
Определение. Пусть и -насыщенные формации. Формация называется максимальной -насыщенной подформацией формации , если , и в не существует такой -насыщенной подформации , что .
Пример. Пусть -насыщенная формация не имеет максимальных -насыщенной подформаций. Тогда для любой -насыщенная подформации , не содержащей , -дефект формации бесконечен.
Лемма. Пусть и --- -насыщенная формации и . Тогда .
Доказательство. Поскольку в силу модулярности решетки -насыщенных формаций имеет место решеточный изоморфизм
и в модулярной решетке длина любой ее подрешетки не превосходит длину самой решетки, то . Лемма доказана.
Лемма. Пусть и --- -насыщенные формаций, причем . Тогда если , и --- соответственно -дефекты формаций и и , то .
Лемма. Пусть и --- -насыщенные формации, причем . Тогда в том и только в том случае имеет конечный -дефект , когда в имеется максимальная -насыщенная подформация с и в нет ни одной максимальной -насыщенной подформации с
Доказательство. Достаточность. Предположим, что . Тогда, поскольку имеет место решеточный изоморфизм,
и, согласно условию, , получаем . Значит, если --- такая максимальная подформация в , что , то . Противоречие. Значит, . Поэтому . Следовательно, .
Необходимость. Если --- такая максимальная подформация формации , что , то очевидно, . Предположим, что в имеется максимальная подформация такая, что
Тогда . Следовательно,
Поэтому, согласно лемме ,
Полученное противоречие завершает доказательство леммы.
-Насыщенные формации с -нильпотентным дефектом 1
Проблема классификации формаций того или иного вида является одной из основных задач теории формаций. Как известно, существенную роль в реализации задачи классификации насыщенных формаций играют так называемые минимальные насыщенные не -формации (или иначе -критические формации). Впервые особая роль минимальных насыщенных не -формаций была отмечена Л.А.Шеметковы в его докладе на VI симпозиуме по теории групп . Там же им была поставлена задача изучения такого рода формаций.
Стремительно развивающаяся в последние годы теория частично насыщенных формаций, наряду с разработкой новых специфических методов исследования, активно использует методы и конструкции, развитые в теории насыщенных формаций. Одним из таких методов является метод критических формаций. Благодаря которому, результаты о минимальных насыщенных не -формациях широко использовались при решении различных вопросов теории насыщенных формаций.
Пусть --- холловская -подгруппа группы . Группу называют -нильпотентной, если нормальная подгруппа в группе .
Группу называют -нильпотентной, если она -нильпотентна для любого .
Обозначим через --- формацию всех -нильпотентных групп.
Определение. Пусть --- некоторая -насыщенная формация. -Дефект формации называют -нильпотентным дефектом.
Определение. -Насыщенная формация называется минимальной -насыщенной не -нильпотентной формацией, если , но все собственные -насыщенные подформации из содержатся в .
Лемма. Пусть --- формация классического типа, --- непустая -насыщенная формация. Тогда если , то в имеется по крайней мере одна минимальная -насыщенная не -подформация.
Следствием леммы является следующая
Лемма. Пусть --- произвольная -насыщенная не -нильпотентная формация. Тогда в имеется по крайней мере одна минимальная -насыщенная не -нильпотентная подформация.
Лемма. Тогда и только тогда является минимальной -насыщенной не -нильпотентной формацией, когда , где --- такая монолитическая группа с минимальной нормальной подгруппой , что , и либо и P --- -нильпотентный корадикал группы , либо , и выполняется одно из следующих условий:
1) группа неабелева, причем, если , то --- -группа, если же , то --- простая неабелева группа;
2) , где --- -группа, а такая монолитическая группа с минимальной нормальной подгруппой , что , , --- -группа, и либо , либо --- группа порядка q, где .
Лемма. Пусть --- произвольная непустая формация и пусть у каждой группы -корадикал не имеет фраттиниевых -главных факторов. Тогда, если --- монолитическая группа из , то .
Лемма. В любой модулярной решетке
если и оба элемента и покрывают , то покрывает и , и ;
двойственно, если и покрывает оба элемента и , то и оба покрывают .
Теорема. Пусть --- формация всех -нильпотентных групп, и пусть --- некоторая -насыщенная формация. Тогда в том и только в том случае -нильпотентный дефект формации равен 1, когда , где --- -насыщенная -нильпотентная подформация формации , --- минимальная -насыщенная не -нильпотентная подформация формации , при этом:
1) всякая -нильпотентная подформация из входит в ;
2) всякая -насыщенная не -нильпотентная подформация из имеет вид .
Доказательство. Необходимость. Пусть -нильпотентный дефект формации равен 1. Так как формация --- не -нильпотентна, то по лемме в формацию входит некоторая минимальная -насыщенная не -нильпотентная подформация . По условию --- максимальная -насыщенная подформация в . Значит, .
Достаточность. Пусть -насыщенная не -нильпотентная формация, удовлетворяющая требованиям теоремы, т.е. --- -насыщенная -нильпотентная подформация формации , --- минимальная -насыщенная не -нильпотентная подформация формации . Понятно, что . Пусть -дефекты формаций , и равны соответственно , и . Поскольку --- -насыщенная -нильпотентная формация, то ее -дефект равен 0. Так как --- минимальная -насыщенная не -нильпотентная формация, то ее -дефект равен 1. Т.е., в силу леммы , получаем, что -дефект формации равен
Если , то отсюда следует -нильпотентность формации , что противоречит условию . Таким образом получаем, что -дефект формации равен 1.
Докажем теперь справедливость утверждения 1) второй части теоремы. Так как --- максимальная -насыщенная подформация в , то, в силу теоремы , имеет место решеточный изоморфизм
Следовательно, --- максимальная -насыщенная подформация в . Следовательно, поскольку , то всякая -нильпотентная подформация из входит в .
Для доказательства утверждения 2) прежде покажем, что в нет минимальных -насыщенных не -нильпотентных подформаций, отличных от . Предположим, что в существует --- минимальная -насыщенная не -нильпотентная подформация, отличная от . Тогда, поскольку , то .
Пусть --- внутренний -локальный спутник формации , такой, что
где . И пусть --- внутренний -локальный спутник формации такой, что
По теореме такие спутники существуют. Тогда по лемме получаем, что формация имеет такой -локальный спутник , что
, если ,
.
По лемме имеем, что , где монолитическая группа с минимальной нормальной подгруппой , что , и либо и --- -нильпотентный корадикал группы , либо , и выполняется одно из следующих условий:
(1) группа неабелева, причем, если , то --- -группа, если же , то --- простая неабелева группа;
(2) , где --- -группа, а такая монолитическая группа с минимальной нормальной подгруппой , что , , --- -группа, и либо , либо --- группа порядка q, где .
Поскольку , то .
Пусть удовлетворяет условию (1), т.е. --- неабелева -группа. Поскольку, очевидно, --- -насыщенная формация, то . Но --- единственная минимальная нормальная подгруппа.
Следовательно, . Но по лемме . Тогда, так как , то получаем . Поэтому
Поскольку --- минимальная -насыщенная не -формация, то имеем, что . Противоречие.
Пусть теперь для группы выполняется условие (2), т.е. . Так как , то
Поскольку и , то . Поэтому
Но тогда . Снова получили противоречие.
Пусть теперь --- -группа. Заметим, что если --- неабелева, то этот случай аналогичен (1). Значит, --- абелева -группа, где .
Покажем, что . Поскольку , то по лемме -дефект формации . С другой стороны, -дефект формации , так как . Значит, -дефект равен 1. Поэтому в существует максимальная -насыщенная -нильпотентная подформация . Следовательно,
Поскольку, в силу теоремы ,
где , то получаем, что --- максимальная -насыщенная формация в .
С другой стороны,
Но тогда максимальна в .
А, значит, по лемме формация максимальна в и . Так как в и имеется единственная максимальная подформация, то
Поскольку , то
Но . Поэтому . Таким образом .
Так как --- абелева -группа, где и , то
где --- группа порядка .
Понятно, что . Значит,
В силу теоремы заключаем, что
Заметим, что
Действительно, пусть
где --- группа минимально порядка и --- минимальная нормальная подгруппа в . Если не является -группой, то, так как , имеем . Значит . Противоречие.
Поэтому --- -группа. Так как при этом и , то --- группа порядка . Но тогда . Противоречие.
Таким образом,
Значит,
Но . Следовательно . Таким образом,
По лемме --- гомоморфный образ группы из . Следовательно . Последнее влечет . Противоречие.
Таким образом, в формации нет минимальных -насыщенных не -нильпотентных подформаций, отличных от .
Пусть теперь --- произвольная не -нильпотентная -насыщенная подформация из . Тогда в силу уже доказанного и леммы получаем, что . Следовательно, применяя лемму и модулярность решетки -насыщенных формаций, получаем
Теорема доказана.
Если , а --- множество всех простых чисел, то из теоремы вытекает
1. Пусть --- некоторая -насыщенная формация. Тогда в том и только в том случае нильпотентный дефект формации равен 1, когда , где --- -насыщенная нильпотентная подформация формации , --- минимальная -насыщенная ненильпотентная подформация формации , при этом:
1) всякая нильпотентная подформация из входит в ;
2) всякая -насыщенная ненильпотентная подформация из имеет вид .
Если и равны , то из теоремы вытекает
2. Пусть --- некоторая насыщенная формация. Тогда в том и только в том случае нильпотентный дефект формации равен 1, когда , где --- насыщенная нильпотентная подформация формации , --- минимальная насыщенная ненильпотентная подформация формации , при этом:
1) всякая нильпотентная подформация из входит в ;
2) всякая насыщенная ненильпотентная подформация из имеет вид .
Если , то вытекает
3. Пусть --- некоторая насыщенная формация. Тогда в том и только в том случае -нильпотентный дефект формации равен 1, когда , где --- насыщенная -нильпотентная подформация формации , --- минимальная насыщенная не -нильпотентная подформация формации , при этом:
1) всякая -нильпотентная подформация из входит в ;
2) всякая насыщенная не -нильпотентная подформация из имеет вид .
РЕШЕТКА - НАСЫЩЕННЫХ ФОРМАЦИЙ С ДОПОЛНЕНИЯМИ
-Насыщенные формации, у которых решетка является решеткой с дополнениями
Изучение -насыщенных формаций, имеющих заданную подрешетку с дополнениями, начато в работах --.
В этом разделе устанавливается тот факт, что тогда и только тогда --- решетка с дополнениями, когда формация представима ввиде объединения всех своих минимальных -насыщенных неразрешимых подформаций и .
Напомним, что группа называется , если она обладает нормальным рядом с абелевыми факторами.
Пусть --- некоторая -насыщенная формация. Тогда через обозначим следующее пересечение , где --- формация всех разрешимых групп.
Определение. Пусть - решетка с и , . Тогда элемент называется дополнением элемента в , если и . Решетку с нулем и единицей называют решеткой с дополнениями, если каждый ее элемент имеет дополнение.
Определение. Решетка с и называется решеткой с относительными дополнениями, если каждый ее интервал является решеткой с дополнениями.
Лемма. Любая модулярная решетка с дополнениями является решеткой с относительными дополнениями.
Лемма. Любая модулярная решетка с дополнениями, имеющая конечное число атомов, является решеткой конечной длины.
Лемма. В решетке конечной длины с относительными дополнениями каждый элемент является объединением содержащихся в нем атомов.
Определение. Пусть --- некоторая -насыщенная формация. -Дефект формации называют разрешимым дефектом.
Лемма. Пусть --- -насыщенная формация. Тогда и только тогда разрешимый дефект формации равен , когда , где --- разрешимая -насыщенная формация, --- минимальная -насыщенная неразрешимая формация, при этом:
1) всякая разрешимая подформация из входит в ;
2) всякая неразрешимая -насыщенная подформация из имеет вид
Следующее утверждение является следствием леммы .
Лемма. Пусть --- произвольная -насыщенная неразрешимая формация. Тогда в имеется по крайней мере одна минимальная -насыщенная неразрешимая подформация.
Лемма. Тогда и только тогда --- минимальная -насыщенная неразрешимая формация, когда , где --- такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима.
Лемма. Пусть --- некоторый набор минимальных -насыщенных неразрешимых формаций, --- -насыщенная разрешимая формация. Тогда если --- некоторая минимальная неразрешимая подформация из
то .
Доказательство. Пусть выполняются условия леммы и , --- некоторая минимальная -насыщенная неразрешимая подформация формации . Покажем, что тогда .
Ввиду леммы , где --- такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима.
Тогда
Поскольку --- неабелева группа, то . Но тогда по лемме имеем . Так как , то найдется такое , что . Значит, . Поскольку --- минимальная -насыщенная неразрешимая формация, то . Лемма доказана.
Лемма. Пусть --- произвольная неразрешимая -насыщенная формация. Тогда и только тогда формация --- атом решетки , когда , где --- некоторая минимальная -насыщенная неразрешимая формация из .
Доказательство. Необходимость. По условию леммы длина решетки равна . Следовательно, формация обладает разрешимой максимальной -насыщенной подформацией. Применяя лемму , имеем , где --- некоторая минимальная -насыщенная неразрешимая подформация из .
Достаточность. Предположим противное. Пусть найдется такая -насыщенная формация , что
Так как не содержится в , то по лемме формация обладает минимальной -насыщенной неразрешимой формацией . Тогда
Следовательно, ввиду леммы имеем . Значит,
Противоречие. Таким образом, --- атом решетки . Лемма доказана.
Лемма. Пусть --- произвольная -насыщенная формация и пусть --- некоторый набор -насыщенных неразрешимых подформаций из , у которых --- максимальная -насыщенная подформация. Пусть
где . Тогда если --- произвольная -насыщенная неразрешимая подформация из c максимальной подформацией , то .
Доказательство. По лемме каждая формация имеет вид
где --- минимальная -насыщенная неразрешимая формация. Следовательно, формация имеет вид
Ввиду леммы формация имеет вид , где --- минимальная -насыщенная неразрешимая формация. Следовательно, по лемме имеет место
т.е. для некоторого . Значит
Лемма доказана.
Лемма. В однопорожденной -насыщенной формации содержится лишь конечное число разрешимых -насыщенных подформаций.
Лемма. В каждой однопорожденной -насыщенной неразрешимой формации содержится лишь конечное множество -насыщенных подформаций с разрешимым дефектом .
Доказательство. Пусть для некоторой группы . Ввиду леммы каждая минимальная -насыщенная неразрешимая подформация из имеет вид , где --- такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима. Тогда
Поскольку --- неабелевая минимальная нормальная подгруппа группы , то . В силу леммы , --- гомоморфный образ группы . Но --- конечная группа. Значит, в имеется лишь конечное множество минимальных -насыщенных неразрешимых подформаций. В силу леммы , формация содержит лишь конечное множество разрешимых -насыщенных подформаций.
Пусть теперь произвольная неразрешимая -насыщенная подформация формации , имеющая разрешимую максимальную -насыщенную подформацию. По лемме имеем
где --- некоторая разрешимая -насыщенная формация, а --- минимальная -насыщенная неразрешимая формация. Из доказанного выше следует, что в имеется лишь конечное множество -насыщенных формаций с разрешимым дефектом . Лемма доказана.
Лемма. Пусть --- однопорожденная -насыщенная формация и --- решетка с дополнениями. Тогда каждый элемент решетки представим в виде
где --- набор всех минимальных -насыщенных неразрешимых формаций, содержащихся в .
Доказательство. Ввиду теоремы и леммы решетка -насыщенных подформаций формации модулярна. Следовательно, модулярной является и ее подрешетка . В силу леммы --- модулярная решетка с относительными дополнениями. Ввиду лемм и решетка имеет конечное число атомов. Значит, по лемме имеет конечную длину. Но тогда, по лемме и лемме , каждый элемент решетки представим в виде
где --- набор всех минимальных -насыщенных неразрешимых формаций, содержащихся в . Лемма доказана.
Теорема. Пусть --- некоторая -насыщенная неразрешимая формация и --- множество всех минимальных -насыщенных неразрешимых подформаций из . Тогда и только тогда --- решетка с дополнениями, когда
Доказательство. Необходимость. Пусть --- решетка с дополнениями. И пусть --- произвольная неразрешимая группа, принадлежащая . Обозначим через .
Пусть --- множество всех неразрешимых формаций из .
Из теоремы и леммы следует, что является модулярной решеткой.
Очевидно, что --- подрешетка решетки . Следовательно, по лемме получаем, что --- решетка с дополнениями.
Ввиду леммы , имеем, что --- модулярная решетка. Поэтому имеет место решеточный изоморфизм
Таким образом, --- решетка с дополнениями. Тогда, применяя лемму , получаем
Так как
то, в силу произвольности выбора группы , получаем
Достаточность. Пусть теперь . Пусть --- произвольная -насыщенная формация, принадлежащая решетке , т.е. .
Обозначим через множество всех минимальных -насыщенных неразрешимых подформаций, содержащихся в , а через --- множество всех минимальных -насыщенных неразрешимых подформаций, не содержащихся в . Очевидно, что множество является дополнением к множеству во множестве всех -насыщенных неразрешимых подформаций, содержащихся в . Пусть --- -насыщенныя формация, порожденная множеством , а --- -насыщенная формация, порожденная множеством . Поскольку и , то ввиду леммы имеют место равенства
Допустим, что не содержится в , то есть . Тогда по лемме в имеется минимальная -насыщенная неразрешимая формация . По лемме для некоторого . Следовательно, . Но . Противоречие. т.е. . Но в таком случае . Ввиду леммы и произвольности выбора формации , каждый элеме нт решетки представим в виде объединения содержащихся в нем атомов.
Покажем теперь, что в решетке дополняема каждая -насыщенная формация. Если , то дополнением к в решетке является формация . Итак, можем считать, что . Обозначим через множества всех атомов решетки , через --- множества всех атомов решетки , которые содержатся в . Тогда , иначе, ввиду доказанного выше,
Пусть --- дополнение к в и
Так как по условию
то ввиду леммы имеет место равенство Рассмотрим формацию . Так как и являются элементами решетки , то . Допустим, что не содержится в , т.е. . Тогда по лемме формация содержит минимальную -насыщенную неразрешимую подформацию . Следовательно, содержит формацию . По лемме формация --- атом решетки , содержащийся в . Так как содержится в , то, применяя теперь лемму , имеем
Полученное противоречие показывает, что . Таким образом, формация --- дополнение к в решетке . А, следовательно, --- решетка с дополнениями. Теорема доказана.
Если , то из теоремы вытекает
. Пусть --- некоторая насыщенная неразрешимая формация и --- множество всех минимальных насыщенных неразрешимых подформаций из . Тогда и только тогда --- решетка с дополнениями, когда
ЗАКЛЮЧЕНИЕ
В дипломной работе изучены ключевые свойства частично насыщенных формаций с заданной структурой подформаций.
В работе установлено, что совокупность всех внутренних -локальных спутников -насыщенной формации образуют полную и модулярную решетку. В теореме дано описание -насыщенного -нильпотентного дефекта 1. В теореме рассматриваются -насыщенные формации, у которых решетка -насыщенных формаций, заключенных между и , является решеткой с дополнениями.
Результаты настоящего диплома являются новыми имогут быть использованы в учебном процессе при чтении спецкурсов на математических специальностях в высших учебных заведениях.
Литература
1. Gaschutz W. Zur Theorie der endlichen auflosbaren Gruppen // Math.Z. --- 1963. --- Bd. 80, №4. --- S. 300--305
2. Libeseder U. Formationsbildungen in endlichen auflosbaren Gruppen, 1963.
3. Schmid P. Every saturated formation is a local formation // J.Algebra. 1978. Vol. 51, N 1. P. 144--148.
4. Шеметков Л.А. Формации конечных групп.- М.: Наука, 1978.-- 272 с.
5. Биркгоф Г. Теория решеток. М.: Наука, 1984.-- 568 с.
6. Скиба А.Н. Алгебра формаций.- Мн.: Белорусская наука, 1997.-- 240 c.
7. Скиба А.Н. О локальных формациях длины 5 // Арифметическое и подгрупповое строение конечных групп. --- Минск: Наука и техника 1986. --- С. 135--149.
8. Шеметков Л.А., Скиба А.Н. Формации алгебраических систем.- М.: Наука, 1989.-- 253 с.
9. Ballester-Bolinches A., Shemetkov L.A. On lattices of -local formations of finite groups // Math. Nachr. --- 1997. --- V. 186. --- P. 57--65.
10. Скиба А.Н., Шеметков Л.А., Кратно -локальные формации и классы Фитинга конечных групп// Матем. Труды, Т.2., № 2 (1999).- С. 144--147.
11. Шаблина И.П. Модулярные и алгебраические решетки -кратно -насыщенных формаций конечных групп: Кан. дис. " Модулярные и алгебраические решетки -кратно -насыщенных формаций конечных групп" // Гом. гос. ун-т им. Ф.Скорины. --- Гомель, 2003. --- 92с.
12. Л.А.Шеметков, Экраны ступенчатых формаций // Тр. VI Всесоюз. симпозиум по теории групп, Киев: Навуковая думка, 1980, с. 37--50.
13. Сафонова И.Н. О существовании -критических формаций // Вопросы алгебры. Гомель: Изд-во Гомельского ун-та. --- 1999. --- Вып. 15. С. 121--129.
14. Сафонова И.Н. К теории -критических формаций конечных групп // Вопросы алгебры. Гомель: Изд-во Гомельского ун-та. --- 2001. --- Вып. 17. С. 124--133.
15. Джарадин Джехад Классификация -локальных формаций длины : Автореф. дис. "Классификация -локальных формаций длины " к-та физ.-мат. наук: Д 02.12.01 // Гом. гос. ун-т им.Ф.Скорины. --- Гомель, 1996. ---15 с.
16. Скиба А.Н., Таргонский Е.А. Классификация локальных формаций конечных групп с нильпотентным дефектом 2 // Матю заметки. --- 1987. -- Т. 41. --- Вып. 4. --- С. 490--499.
17. Жевнова Н.Г. -локальные формации с дополняемыми подформациями: Автореф. дис. "-локальные формации с дополняемыми подформациями" к-та физ.-маи. наук: Д 02.12.01 // Гом. гос. ун-т им. Ф.Скорины. --- Гомель, 1997. --- 17 с.
18. Сафонова И.Н. О частично насыщенных формациях с заданной системой подформаций // IX Бел. мат. конф. Гродно. --- 2004. --- С. 47--48.
19. Рыжик В.Н., О критических -локальных формациях, Препринт // Гомельский госуниверситет. Гомель, 1997. №58. 12 с.
20. Скиба А.Н. Характеризация конечных разрешимых групп заданной нильпотентной длины // Вопросы алгебры. Минск: Изд-во"Университетское". --- 1987. --- Вып. 3. С. 21--31.
21. Джарадин Джехад О формациях с системами наследственных подформаций // Изв. вузов. Математика. --- 1997. --- Вып. 1. --- С. 1--5.
22. Джарадин Джехад Минимальные -насыщенные ненильпотентные формации // Вопросы алгебры. Гомель: Изд-во Гом. гос. ун-т. 1995. Вып. 8. С. 59--64.
23. Джарадин Джехад Элементы высоты 3 решетки -насыщенных формаций // Вопросы алгебры. Гомель: Изд-во Гом. гос. ун-т. 1996. Вып. 9. С. 45--59.
24. Жевнова Н.Г. -Локальные формации с дополняемыми подформациями с булевой решеткой -локльных подформаций // Докл. АН Беларуси. --- 1997. --- Т. 41. --- №5. --- С. 15--19.
25. Монахов В.С. Введение в теорию конечных групп и их классов. --- Гомель: Гом. гос. ун-т им. Ф.Скорины, 2003. --- 319 с.
26. Рыжик В.Н., Скиба А.Н. Факторизации -локальных формаций // Вопросы алгебры. Гомель: Изд-во Гом. гос. ун-т. 1997. Вып. 11. С. 76--89.
27. Сафонова И.Н. О минимальных -локальных формациях конечных групп // Вопросы алгебры. Гомель: Изд-во Гомельского ун-та. --- 1998. --- Вып. 12. С. 123--130.
28. Сафонова И.Н. О критических -локальных формациях конечных групп. --- Препринт // Изд-во Гомельского ун-та. Гомель, 1998. № 76. 12 с.
29. Скиба А.Н., Шеметков Л.А. О частично локальных формациях // Док. АН Беларуси. --- 1995. --- Т.39, №3. С. 9--11.
30. Шаблина И.П. Формации с максимальной -кратно -насыщенной нильпотентной подформацией // Изввестия Гом. гос. ун-та им. Ф.Скорины. Вопросы алгебры. --- 2001. --- №3(6). --- С. 194.--197.
31. Шаблина И.П. Формации групп с максимальной -насыщенной нильпотентной подформацией // Весн. Вiцебс. джярж. ун-та. ---2001. №4(22). --- С. 78--83.
32. Шаблина И.П. Формации групп с максимальной -локальной нильпотентной подформацией. --- Гомель, 2002. --- 17 с. ---(Препринт/ УО"ГГУ им. Ф.Скорины", №25).
33. Шаблина И.П. Об алгебраичности решетки всех -заскнутых -кратно -насыщенных формаций // Некоторые вопросы алгебры и прикладной математики: Сб. науч. тр. Бел. гос. ун-та трансп.; Под ред. Т.И.Васильевой. --- Гомель, 2003. --- С. 34--37.
34. Шаблина И.П. Алгебраичность решетки всех -заскнутых -кратно -насыщенных формаций // Изввестия Гом. гос. ун-та им. Ф.Скорины. Вопросы алгебры. --- 2002. --- №5(14). --- С. 59.--67.
35. Шаблина И.П. О замкнутых -локальных формациях , у которых решетка является решеткой с дополнениями. --- Препринт // Изд-во Гомельского ун-та. Гомель, 2003. № 40. 10 с.
36. Doerk K., Hawkes T. Finite soluble groups. --- Berlin--New York: Walter de Gruyter, 1992. --- 889 p.
37. Gaschutz W. Lectures of subgroups of Sylow type in finite soluble groups // Notes on pure mathematics; № 11. --- Canberra: Australian National University. --- 1979. --- 100 p.
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |