2
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Связь комбинаторики с различными разделами математики
Выполнила:
студентка V курса математического факультета
Бородулина Юлия Анатольевна
Научный руководитель:
к. ф-м. н., доцент кафедры алгебры и геометрии
Е.М. Ковязина
Рецензент:
к. ф-м. н., доцент кафедры алгебры и геометрии
О.С. Руденко
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
1.3. Комбинаторные задачи
Рассмотрим несколько примеров, иллюстрирующих возможности применения леммы Бернсайда при решении комбинаторных задач на перечисление.
Задача 1. Сколькими способами можно раскрасить вершины куба в три цвета (например, красный, синий и зелёный)?
Решение. (В остальных задачах будем использовать обозначения, аналогичные обозначениям в этой задаче). Поскольку каждую из восьми вершин куба можно раскрасить тремя способами, причём независимо от того, как раскрашены другие вершины, то множество всех вершин куба можно раскрасить 38=6561 различными способами (по формуле ). Однако при таком подходе к решению задачи молчаливо предполагается, что мы умеем различать вершины куба перед окраской, то есть, скажем, куб жёстко закреплён или его вершины занумерованы. При этом полученный ответ можно интерпретировать следующим образом: можно так раскрасить 38 абсолютно одинаковых, жёстко закреплённых кубов, что все они будут различаться. Для 38+1 кубов этого сделать уже нельзя. Ситуация существенно меняется, если мы откажемся от предположения о том, что кубы жёстко закреплены, так как по-разному окрашенные кубы можно повернуть так, что в новом положении их окраски совпадут (рис.2).
Естественно считать, что два куба раскрашены одинаково, если их раскраски совпадают вплоть до способа размещения кубов в пространстве, то есть вплоть до некоторого вращения одного из кубов. Будем говорить, что такие раскраски кубов геометрически неотличимы. Поэтому естественным уточнением задачи о раскраске является следующая задача: сколькими геометрически различными способами можно раскрасить вершины куба в три цвета.
Переформулируем теперь эту задачу так, чтобы стала понятной её связь с леммой Бернсайда. Пусть М - множество всевозможных по-разному раскрашенных кубов одного размера, положение которых в пространстве фиксировано (|M|=38), G - группа всех вращений куба. Группа G естественным образом определяет группу перестановок на множестве М. Именно, если бG - некоторое вращение, то каждому кубу из М можно сопоставить некоторый другой куб, который получается из первого при вращении б. Это соответствие является перестановкой на М, которую будем обозначать . Группу всех таких перестановок множества М, определяемых перестановками из G будем обозначать . Ясно, что || = |G|. То, что два куба К1 и К2 из М раскрашены геометрически одинаково, означает, что один из них можно перевести вращением в такое положение, в котором они неразличимы. Иными словами, существует такая перестановка , что (К1) = К2, то есть К1 и К2 содержатся в одной орбите группы , действующей на множестве М. Таким образом, для того чтобы определить число геометрически различимых способов раскраски вершин куба, нужно найти количество орбит группы на множестве М. Считая вершины кубов занумерованными числами 1, 2, 3, 4, 5, 6, 7, 8, раскраску каждого из 38 кубов можно однозначно охарактеризовать «словом» из восьми букв, каждая из которых есть либо к, либо с, либо з. То, что i-тая буква слова равна к (или с, или з) означает, что i-тая вершина при выбранной нумерации окрашена в красный цвет (или в синий, или в зелёный соответственно). Перестановки из группы переставляют последовательности букв к, с, з. Для того чтобы применить лемму Бернсайда, необходимо определить число неподвижных точек каждой перестановки из . Последовательность букв к, с, з будет неподвижной для перестановки тогда и только тогда, когда при разложении соответствующей перестановки бG в произведение циклов вершины куба, номера которых входят в один и тот же цикл, окрашены одним цветом. Если перестановка бG разложена в произведение k циклов, то число её неподвижных точек равно 3k, где , так как вершины куба, номера которых входят в один цикл, можно раскрасить тремя способами. Опишем разложения в произведение циклов для всех перестановок из группы G вращений куба.
а) Вокруг каждой из трёх осей, соединяющих центры противоположных граней, имеется три вращения на углы , , . Им соответствуют перестановки:
1) (1, 5, 8, 4) (2, 6, 7, 3)
2) (1, 8) (2, 7) (3, 6) (4, 5)
3) (1, 4, 8, 5) (2, 3, 7, 6)
4) (1, 4, 3, 2) (5, 8, 7, 6)
5) (1, 3) (2, 4) (5, 7) (6, 8)
6) (1, 2, 3, 4) (5, 6, 7, 8)
7) (1, 5, 6, 2) (3, 4, 8, 7)
8) (1, 6) (2, 5) (3, 8) (4, 7)
9) (1, 2, 6, 5) (3, 7, 8, 4)
б) Вокруг каждой из четырёх диагоналей куба имеется по два вращения. Им соответствуют перестановки:
10) (1) (2, 5, 4) (3, 6, 8) (7)
11) (2) (1, 3, 6) (4, 7, 5) (8)
12) (3) (1, 6, 8) (2, 7, 4) (5)
13) (4) (1, 3, 8) (2, 7, 5) (6)
14) (1) (2, 4, 5) (3, 8, 6) (7)
15) (2) (1, 6, 3) (4, 5, 7) (8)
16) (3) (1, 8, 6) (2, 4, 7) (5)
17) (4) (1, 8, 3) (2, 5, 7) (6)
в) Вокруг каждой из шести осей, соединяющих середины противоположных рёбер куба, имеется одно вращение. Им соответствуют перестановки:
18) (1, 5) (2, 8) (3, 7) (4, 6)
19) (1, 2) (3, 5) (4, 6) (7, 8)
20) (1, 7) (2, 3) (4, 6) (5, 8)
21) (1, 7) (2, 6) (3, 5) (4, 8)
22) (1, 7) (2, 8) (3, 4) (5, 6)
23) (1, 4) (2, 8) (3, 5) (6, 7)
Вместе с тождественной перестановкой (1)(2)(3)(4)(5)(6)(7)(8) получаем 24 перестановки - все элементы группы G. Итак, в группе G вращений куба имеется:
1 перестановка типа <1, 1, 1, 1, 1, 1, 1, 1>,
6 перестановок типа <4, 4>,
9 перестановок типа <2, 2, 2, 2>,
8 перестановок типа <1, 1, 3, 3>.
Тогда перестановка первого типа имеет 38 неподвижных точек, любая из перестановок второго типа - 32, третьего и четвёртого типов - 34 неподвижных точек (по формуле nk = nk). Поэтому согласно лемме Бернсайда, имеем (38 + 6•32 + 9•34 + 8•34) = 333.
Таким образом, число геометрически различимых способов раскраски вершин куба в три цвета равно 333.
Задача 2. Сколько различных ожерелий из семи бусин можно составить из бусин двух цветов - красного и синего?
Решение. Переформулируем эту задачу следующим равносильным образом: сколькими геометрически различными способами можно раскрасить вершины правильного семиугольника в два цвета? Пусть М - множество всевозможных по-разному раскрашенных правильных семиугольников одного размера, положение которых в пространстве фиксировано. Тогда имеется 27 = 128 различных вариантов раскраски вершин семиугольника, так как каждую вершину независимо от других можно раскрасить двумя способами. Здесь два способа раскраски неотличимы, если один из них можно получить из другого, применяя к семиугольнику либо преобразования вращения, либо симметрии относительно осей. Будем описывать раскраски «словами» длины 7, составленными из букв к (вершина окрашена в красный цвет) и с (вершина окрашена в синий цвет). Проделаем те же действия, что и в задаче 1 для применения леммы Бернсайда. Опишем разложения в произведение циклов для всех перестановок из группы G.
а) Тождественному преобразованию соответствует перестановка:
1) (1)(2)(3)(4)(5)(6)(7)
б) Поворотам на углы соответствуют перестановки:
2) (1,2,3,4,5,6,7)
3) (1,3,5,7,2,4,6)
4) (1,4,7,3,6,2,5)
5) (1,5,2,6,3,7,4)
6) (1,6,4,2,7,5,3)
7) (1,7,6,5,4,3,2)
в) Симметриям относительно осей, соединяющих вершины семиугольника с серединами противоположных сторон, соответствуют перестановки:
8) (1) (2,7) (3,6) (4,5)
9) (2) (1,3) (7,4) (5,6)
10) (3) (2,4) (1,5) (6,7)
11) (4) (3,5) (2,6) (7,1)
12) (5) (4,6) (3,7) (2,1)
13) (6) (5,7) (4,1) (2,3)
14) (7) (1,6) (2,5) (3,4),
где 1, 2, 3, 4, 5, 6, 7 - числа, с помощью которых занумерованы вершины семиугольника.
Итак, в группе G имеется:
1 перестановка типа <1, 1, 1, 1, 1, 1, 1>,
6 перестановок типа <7>,
7 перестановок типа <1, 2, 2, 2>.
Слово неподвижно относительно перестановки тогда и только тогда, когда буквы, стоящие на местах с номерами из одного цикла в перестановке б, совпадают. Поэтому тождественная перестановка имеет 27 неподвижных точек на М, перестановки второго типа - по 2, а перестановки третьего типа - по 24. Применяя лемму Бернсайда, получаем
(27 + 6•2 + 7•24) = 18.
Итак, из бусин двух цветов можно составить 18 семибусенных ожерелий.
Задача 3. Грани куба можно раскрасить: а) все в белый цвет; б) все в чёрный цвет; в) часть в белый, а остальные в чёрный. Сколько имеется разных способов раскраски?
Решение.
Грань (1 4 5 8) - 1
Грань (2 3 6 7) - 2
Грань (3 4 7 8) - 3
Грань (1 2 5 6) - 4
Грань (1 2 3 4) - 5
Грань (5 6 7 8) - 6
Рис. 3
а) Вокруг каждой из трёх осей, соединяющих центры противоположных граней, имеется три вращения на углы , , . Им соответствуют перестановки:
1) (1) (2) (5, 4, 6, 3)
2) (1) (2) (4, 3) (6, 5)
3) (1) (2) (5, 3, 6, 4)
4) (3) (4) (1, 6, 2, 5)
5) (3) (4) (1, 2) (6, 5)
6) (3) (4) (5, 2, 6, 1)
7) (5) (6) (1, 3, 2, 4)
8) (5) (6) (1, 2) (3, 4)
9) (5) (6) (4, 2, 3, 1)
б) Вокруг каждой из четырёх диагоналей куба имеется по два вращения. Им соответствуют перестановки:
10) (2, 6, 3) (1, 5, 4)
11) (3, 6, 2) (4, 5, 1)
12) (6, 4, 2) (1, 5, 3)
13) (2, 4, 6) (3, 5, 1)
14) (1, 3, 6) (2, 4, 5)
15) (6, 3, 1) (5, 4, 2)
16) (1, 4, 6) (2, 3, 5)
17) (6, 4, 1) (5, 3, 2)
в) Вокруг каждой из шести осей, соединяющих середины противоположных рёбер куба, имеется одно вращение. Им соответствуют перестановки:
18) (2, 3) (1, 4) (5, 6)
19) (1, 3) (4, 2) (5, 6)
20) (1, 6) (5, 2) (3, 4)
21) (1, 5) (6, 2) (3, 4)
22) (4, 6) (3, 5) (1, 2)
23) (6, 3) (5, 4) (1, 2)
Вместе с тождественной перестановкой (1)(2)(3)(4)(5)(6) получаем 24 перестановки - все элементы группы G. Итак, в группе G вращений куба имеется:
1 перестановка типа <1, 1, 1, 1, 1, 1>,
6 перестановок типа <1, 1, 4>,
3 перестановки типа <1, 1, 2, 2>,
8 перестановок типа <3, 3>,
6 перестановок типа <2, 2, 2>.
Поэтому тождественная перестановка имеет 26 неподвижных точек на М, перестановки второго и пятого типов имеют по 23 неподвижных точек на М, перестановки третьего типа - по 24, а перестановки четвёртого типа - по 22. Тогда по лемме Бернсайда получаем (26 + 6•23+ 3•24+ 8•22 + 6•23) = 10.
Итак, число геометрически различных способов раскраски граней куба в два цвета равно 10.
Задача 4. Сколько различных ожерелий можно составить из двух синих, двух белых и двух красных бусин?
Решение. Переформулируем задачу так: сколькими геометрически различными способами можно раскрасить вершины правильного шестиугольника так, чтобы две были синего цвета, две - белого, две - красного? а) Вокруг центра шестиугольника имеется пять поворотов на углы . Им соответствуют перестановки:
1) (1, 2, 3, 4, 5, 6)
2) (1, 3, 5) (2, 4, 6)
3) (1, 4) (2, 5) (3, 6)
4) (1, 5, 3) (2, 6, 4)
5) (1, 6, 5, 4, 3, 2)
б) Имеется три симметрии относительно осей, соединяющих противоположные вершины правильного шестиугольника. Им соответствуют перестановки:
6) (1) (4) (2, 6) (3, 5)
7) (2) (5) (3, 1) (4, 6)
8) (3) (6) (2, 4) (1, 5)
в) Имеется три симметрии относительно осей, соединяющих середины противоположных сторон правильного шестиугольника. Им соответствуют перестановки:
9) (1, 2) (6, 3) (5, 4)
10) (1, 6) (2, 5) (3, 4)
11) (2, 3) (1, 4) (6, 5)
Вместе с тождественной перестановкой (1) (2) (3) (4) (5) (6) получаем 12 перестановок - все элементы группы G. Итак, в группе G имеется:
1 перестановка типа <1, 1, 1, 1, 1, 1>,
2 перестановки типа <6>,
2 перестановки типа <3, 3>,
4 перестановки типа <2, 2, 2>,
3 перестановки типа <1, 1, 2, 2>.
Определим количество неподвижных точек для перестановок каждого типа. Так как количество различных цветов, в которые нужно раскрасить шестиугольник, равно трём, то минимальное количество циклов в перестановке должно быть равно трём, чтобы она имела неподвижные точки. То есть перестановки 1), 2), 4), 5) неподвижных точек не имеют. Для перестановки первого типа получим 36 = = 90 неподвижных точек. Для каждой перестановки типа <2, 2, 2> по принципу умножения получаем по Р3 =3•2•1= 6 неподвижных точек. Для каждой перестановки типа <1, 1, 2, 2> по принципу умножения получим по Р3 =3•2•1•1= 6 неподвижных точек. Применим лемму Бернсайда: (1•90+ 4•6+ 3•6) = 11.
Итак, 11 различных ожерелий можно составить из двух синих, двух белых, двух красных бусин.
Задача 5. Сколькими геометрически различными способами три абсолютно одинаковые мухи могут усесться в вершинах правильного пятиугольника?
Решение. Обозначим М - множество различных способов расположения трёх одинаковых мух в вершинах пятиугольника, если вершины занумерованы. Тогда |M| = 25 (3, 2)==10 способов расположения мух, где 2 - количество элементов множества М1 = {м, с} (где м - муха, с - свободная вершина),
3, 2 - кратности соответственно м и с.
а) Вокруг центра пятиугольника имеется четыре поворота на углы . Им соответствуют перестановки:
1) (1, 2, 3, 4, 5)
2) (1, 3, 5, 2, 4)
3) (1, 4, 2, 5, 3)
4) (1, 5, 4, 3, 2)
б) Имеется пять симметрий относительно осей, соединяющих вершины пятиугольника с серединами противоположных сторон. Им соответствуют перестановки:
5) (1) (2, 5) (3, 4)
6) (2) (1, 3) (5, 4)
7) (3) (2, 4) (1, 5)
8) (4) (3, 5) (2, 1)
9) (5) (1, 4) (2, 3),
где 1, 2, 3, 4, 5 - числа, с помощью которых занумерованы вершины пятиугольника. Вместе с тождественной перестановкой (1)(2)(3)(4)(5) имеем 10 элементов группы G. Итак, в группе G имеется:
1 перестановка типа <1, 1, 1, 1, 1>,
4 перестановки типа <5>,
5 перестановок типа <1, 2, 2>.
Определим количество неподвижных точек для перестановок каждого типа. Чтобы перестановка имела неподвижные точки, минимальное количество циклов в перестановке должно быть равно двум, так как множество М1 состоит из двух элементов м и с. Поэтому перестановки 1) - 4) не имеют неподвижных точек. Тогда для перестановки типа <1, 1, 1, 1, 1> имеем по формуле: 25 (3, 2) = = 10 неподвижных точек. Для каждой перестановки типа <1, 2, 2> получим по принципу умножения по Р2 =2•1•1= 2 неподвижные точки. По лемме Бернсайда получаем (1•10+ 5•2) = 2.
Итак, двумя геометрически различными способами три одинаковые мухи могут усесться в вершинах правильного пятиугольника.
Задача 6. Сколькими способами можно раскрасить вершины куба в два цвета (красный и синий) так, чтобы вершин каждого цвета было поровну?
Решение. Для решения этой задачи воспользуемся задачей 1. Пусть М - множество всевозможных по-разному раскрашенных кубов одного размера, положение которых в пространстве фиксировано. Тогда по формуле nk (k1, k2, …, kn) = получим |M| = 28 (4,4) = = 70 по-разному раскрашенных кубов. Так как нам нужно раскрасить вершины в два цвета (4 - в красный, 4 - в синий), то минимальное количество циклов в перестановке должно быть равно двум. Поэтому все перестановки 1) - 24) (задача 1) имеют неподвижные точки. В результате в группе G имеется:
1 перестановка типа <1, 1, 1, 1, 1, 1, 1, 1>,
6 перестановок типа <4, 4>,
9 перестановок типа <2, 2, 2, 2>,
8 перестановок типа <1, 1, 3, 3>.
Тогда перестановка типа <1, 1, 1, 1, 1, 1, 1, 1> имеет 28 (4,4) = = 70 неподвижных точек. Каждая перестановка типа <4, 4> имеет (по принципу умножения Р2 =2•1= 2 неподвижные точки. Для каждой перестановки типа <2, 2, 2, 2> имеется 24 (2, 2) = = 6 неподвижных точек. Каждая перестановка типа <1, 1, 3, 3> имеет (по принципу умножения) Р2 =2•1•2•1= 4 неподвижные точки. По лемме Бернсайда получаем (1•70+ 6•2 + 9•6 + 8•4) = 7.
Итак, семью способами можно раскрасить вершины куба в два цвета так, чтобы вершин каждого цвета было поровну.
Задача 7. Сколькими различными способами можно грани куба раскрасить в четыре цвета так, чтобы все четыре цвета присутствовали в раскраске каждого куба?
Решение. Для решения этой задачи воспользуемся задачей 3. Пусть М - множество всевозможных по-разному раскрашенных кубов одного размера, положение которых в пространстве фиксировано. Тогда по принципу умножения: первую грань можно раскрасить 4 способами, вторую - тремя, третью - двумя, четвёртую - одним способом, пятую - четырьмя, шестую - четырьмя способами. Получим |M| = 4•3•2•1•4•4 = 384. Найдём геометрически различные способы раскраски. Для этого используем описанные в задаче 3 разложения в произведение циклов всех перестановок из группы G вращений куба. Так как в раскраске куба должны присутствовать четыре разных цвета, то минимальное количество циклов в перестановке должно быть равно четырём. Поэтому перестановки 1), 3), 4), 6), 7), 9) - 23) в задаче 3 неподвижных точек не имеют. Таким образом, неподвижные точки имеют 3 перестановки типа <1, 1, 2, 2> и 1 перестановку типа <1, 1, 1, 1, 1, 1>. Определим количество неподвижных точек для перестановок каждого типа. Для перестановки типа <1, 1, 1, 1, 1, 1> имеем по принципу умножения Р4 = 4•3•2•1•4•4 = 384 неподвижные точки. Для каждой перестановки типа <1, 1, 2, 2> по принципу умножения имеется Р4 = 4•3•2•1 = 24 неподвижные точки. По лемме Бернсайда получаем (1•384+3•24) = 19.
Итак, существует 19 различных способов раскраски граней куба в 4 цвета так, чтобы все 4 цвета присутствовали в раскраске каждого куба.
Диаметром фигуры F назовём такое расстояние d, что, во-первых, расстояние между любыми двумя точками M и N фигуры F не превосходит d, и, во-вторых, можно отыскать в фигуре F хотя бы одну пару точек A, B, расстояние между которыми в точности равно d.
Примеры:
· Если фигура F представляет собой сегмент круга, ограниченный дугой l и хордой а, то в случае, когда дуга l не превосходит полуокружности, диаметр фигуры F равен а; в случае же, когда дуга l больше полуокружности, диаметр фигуры F совпадает с диаметром всего круга.
· Если фигура F представляет собой многоугольник, то его диаметром является наибольшее из расстояний между вершинами.
В фигуре может существовать и много пар точек, расстояние между которыми равно d: в случае эллипса такая пара точек только одна, в случае квадрата их две, в случае правильного треугольника - три, в случае круга таких пар бесконечно много.
Постановка задачи: Круг диаметра d нельзя разбить на две части, диаметр каждой из которых будет меньше d, но можно разбить на три такие части (рис. 4(а, б)).
Тем же свойством обладает равносторонний треугольник со стороной d. Но имеются фигуры, которые можно разбить на две части меньшего диаметра (рис. 5(а, б)).
Мы можем рассматривать для любой фигуры F задачу о разбиении её на части меньшего диаметра. Наименьшее число частей, которые для этого потребуются, обозначим через a(F). Если F - круг или равносторонний треугольник, то a(F) = 3, а для эллипса или параллелограмма a(F) = 2. Возникает вопрос, нельзя ли найти плоскую фигуру, для которой a(F)>3, то есть такую фигуру, что для разбиения её на части меньшего диаметра нельзя обойтись тремя частями, а потребуется 4 или большее число частей?
Ответ даёт теорема Борсука: Всякая плоская фигура F диаметра d может быть разбита на три части диаметра меньше d, то есть a(F) ? 3.
Лемма: Всякая плоская фигура диаметра d может быть заключена в правильный шестиугольник, у которого расстояние между параллельными сторонами равно d.
Доказательство леммы.
Проведём к фигуре F опорные прямые l1 и l2, причём l2 параллельна l1. Вся фигура будет находиться в полосе между прямыми l1 и l2, расстояние между которыми не превосходит d (так как диаметр фигуры F равен d) (рис. 6). Проведём к фигуре F две параллельные опорные прямые m1 и m2, составляющие с l1 угол 60°. Прямые l1, l2, m1, m2 образуют параллелограмм ABCD с углом 60° и высотами не превосходящими d, внутри которого целиком заключается фигура F. Проведём две опорные прямые p1, p2 фигуры F, составляющие с l1 угол 120°, и обозначим через M и N основания перпендикуляров, опущенных на эти прямые из концов диагонали AC параллелограмма (рис. 6). Покажем, что направление прямой l1 можно выбрать таким образом, чтобы выполнялось равенство AM=CN. Допустим, AM?CN, и пусть, для определённости, AM<CN. Таким образом, величина y= AM - CN отрицательна. Начнём непрерывно изменять направление прямой l1 так, чтобы она повернулась на 180° (фигуру F будем оставлять неподвижной). Вместе с прямой l1 будут менять своё положение прямые l2, m1, m2, p1, p2 (так как их положение определяется выбором l1). Поэтому при повороте прямой l1 будут непрерывно перемещаться и точки A, C, M, N, а значит, будет непрерывно изменяться величина y= AM - CN.
Но когда прямая l1 повернётся на 180°, она займет положение, которое раньше занимала прямая l2. Поэтому мы получим тот же параллелограмм, что и на рис. 6, но в нем точки А и С, а так же М и N поменяются «ролями». Следовательно, в этом положении величина у будет уже положительной.
Если мы теперь изобразим график изменения величины у при повороте прямой l1 от 0° до 180° (рис. 7), то увидим, что найдётся положение прямой l1, при котором величина у обращается в нуль, т.е. АМ = CN (ибо, непрерывно изменяясь от отрицательного значения до положительного, величина у должна в некоторый момент обратиться в нуль). Мы рассмотрим положение всех наших прямых как раз в тот момент времени, когда величина у обращается в нуль (рис. 8). Из равенства АМ = CN вытекает, что шестиугольник, образованный прямыми l1, l2, m1, m2, p1, p2, центрально-симметричен.
Каждый угол этого шестиугольника равен 120°, а расстояние между противоположными сторонами не превосходит d. Если расстояние между p1 и p2 меньше d, то мы раздвинем эти прямые (перемещая их на одинаковое расстояние) так, чтобы расстояние между раздвинутыми прямыми было равно d. Точно так же мы поступим с прямыми l1, l2, а за тем с прямыми m1, m2. В результате мы получим центрально-симметричный шестиугольник (с углами 120°), у которого противоположные стороны удалены друг от друга на расстояние d. Из сказанного ясно, что все стороны этого шестиугольника равны между собой, т. е. этот шестиугольник - правильный, причём фигура F расположена внутри шестиугольника.
Доказательство теоремы Борсука. Пусть F - фигура диаметра d. Согласно доказательной лемме, фигура F содержится внутри правильного шестиугольника, расстояние между противоположными сторонами которого равно d. Покажем, что этот правильный шестиугольник можно разрезать на три части, каждая из которых имеет диаметр, меньший d. При этом фигура F также разрежется на три части, диаметр каждой из которых будет меньше d. Требуемое разбиение правильного шестиугольника на три части показано на рис. 9 (точки P, Q и R являются серединами сторон, а О - центр шестиугольника). Чтобы убедится, что диаметры частей меньше d, достаточно заметить, что в треугольнике PQL угол Q прямой, и поэтому PQ < PL = d. Таким образом, теорема доказана.
Из доказательства теоремы легко заключить, что всякая плоская фигура диаметра d может быть разбита на три части, диаметр каждой из которых не превосходит (так как PQ= ) (рис. 9). Эта оценка диаметров частей является наилучшей, так как круг диаметра d нельзя разбить на три части, диаметр каждой из которых был бы меньше (часть, имеющая диаметр меньше , высекает на окружности множество, расположенное на дуге, меньшей 120°, поэтому три такие части не покрывают всей окружности).
Можно предложить следующие расширения по данному вопросу:
Теорема Борсука является стержнем этого вопроса, но она не даёт полного решения вопроса о том, чему равно a(F) для произвольной заданной фигуры F диаметра d. Она даёт лишь оценку a(F) сверху: a(F) ? 3. В то же время, очевидно, что a(F) ? 2 для любой фигуры. Возникает задача: для каких плоских фигур a(F) равно двум и для каких оно равно трём.
Можно рассматривать задачу о покрытии выпуклых фигур гомотетичными (о наименьшем числе «уменьшенных копий» фигуры F, которыми можно покрыть всю фигуру F) и задачу о наименьшем числе направлений, освещающих всю границу фигуры F.
Все эти задачи можно рассмотреть для пространственных тел.
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |