2
Содержание
§1. Свойства НОД и НОК
Пусть S - коммутативная мультипликативная несократимая полугруппа с 1 и без делителей единицы. Такие полугруппы называются целыми, или коническими.
Элементы и из S называются взаимно простыми, если НОД(,)=1.
Предварительно рассмотрим простейшие свойства отношения делимости в целых полугруппах.
Свойства делимости в целых полугруппах
(1) ;
(2) - рефлексивность;
(3) - антисимметричность;
(4) - транзитивность;
(5) ;
(6) ;
(7) Любой простой элемент неприводим;
(8) р неприводим ;
Свойство 1. НОД и НОК нескольких элементов определены однозначно, если существуют.
Доказательство. Проведем доказательство для НОД двух элементов а и b из S. Пусть (a,b) и (a,b). Тогда из определения НОД следует и . По свойству антисимметричности имеем .
Свойство 2. .
Доказательство. Импликации и очевидны. Пусть , т.е. для некоторого . Очевидно, b - общий делитель а и b. Возьмем произвольный общий делитель с элементов а и b. Для него существуют такой элемент , что и . Таким образом, с делит b. Это и означает, что . Аналогично доказывается .
Следствие 1. .
Следствие 2. и .
Свойство 3. и .
Доказательство следует из коммутативности операции умножения и свойств делимости.
Свойство 4. .
Доказательство. Обозначим d1=НОД(НОД(a,b),c). Так как d1 является общим делителем НОД(a,b) и c, то d1 - общий делитель и для элементов a,b и c. Верно и обратно: любой общий делитель этих трех элементов является общим делителем для НОД(a,b) и c. Аналогичным свойством обладает и элемент d2=НОД(a, (НОД(b,c)). Тогда элементы d1 и d2 делят друг друга. По свойству антисимметричности делимости получаем d1=d2.
Свойство 5. .
Доказательство. Обозначим k1=НОК(НОК(a,b),c). Так как k1 является общим кратным элементов НОК(a,b) и c, то k1 - общее кратное и для элементов a,b и c. Верно и обратно: любое общее кратное этих трех элементов является общим кратным для НОК(a,b) и c. Аналогичным свойством обладает и элемент k2=НОК(НОК(a,b),c). Тогда элементы k1 и k2 делят друг друга. По свойству антисимметричности делимости получаем k1=k2.
Свойство 6. Если элементы а и b не взаимно просты, то а и b имеют общий делитель, не равный 1.
Доказательство. По условию НОД(a,b)=d1. Тогда по определению d и есть не равный единице общий делитель а и b.
Свойство 7. =.
Доказательство. Обозначим d=НОД(a,b). По свойству (6) делимости элемент сd делит любой общий делитель элементов ас и bс, следовательно, является их НОД. Свойство доказано.
Свойство 8. Если , то .
Доказательство. Из условия следует, что d делит любой общий делитель элементов а и b и . Тогда по свойству (6) делимости элемент делит любой общий делитель элементов , следовательно, является их НОД. Свойство доказано.
Свойство 9. Если и , то .
Доказательство. Пусть НОД и НОД(а,b) = 1, тогда среди делителей элементов b и с нет делителей элемента а. Следовательно, и среди делителей элемента bc нет делителей элемента а, что и означает, что .
Свойство 10. Если , то для любых N.
Доказательство. Докажем, что методом математической индукции. Пусть m = 1, тогда по условию, т.е. база индукции верна. Предположим, что для всех k < m. Покажем, что при k = m. по свойству (10) для с = b. Отсюда, для всех N. по свойству 3 делимости. Аналогичными рассуждениями получаем для любого N. Следовательно, .
Свойство 11. Если , то для любого .
Доказательство. Пусть , тогда а = sd и c = td для некоторых s,tS таких, что НОД(s,t) = 1. Поскольку , то НОД(s,b) = 1 и по свойству 9 НОД(s,tb) = 1. Следовательно, . Свойство доказано.
Свойство 12. Существование НОК(a,b) влечет существование НОД(a,b) и равенство НОД(a,b) НОК(a,b) = ab.
Доказательство. Если хотя бы одно из чисел или равно 0, то и равенство справедливо. Пусть элементы и ненулевые и . Поскольку - общее кратное чисел и , то для некоторого . Так как и , то - общий делитель и . Докажем, что делится на любой общий делитель элементов и . Пусть - произвольный общий делитель чисел и , т.е. и для некоторых . Поскольку - общее кратное элементов и , то . Так как , то для некоторого . Отсюда . Следовательно, , и, значит, НОД().
Предложение 1. Полугруппа является НОК-полугруппой тогда и только тогда, когда есть НОД-полугруппа.
Доказательство. По свойству 12 достаточно доказать, что любая НОД-полугруппа является НОК-полугруппой. Пусть есть НОД-полугруппа. Возьмем произвольные . Если хотя бы одно из чисел равно 0, то . Рассмотрим случай и . Обозначим . Тогда и для некоторых . Поскольку по свойству 7, то . Положим . Число является общим кратным элементов и . Осталось показать, что на делится любое общее кратное и . Возьмем произвольное общее кратное элементов и , т. е. для некоторых . Тогда , т.е. (поскольку ). По свойству 11 имеем , значит, для некоторого . Поэтому , т.е. .
§ 2. Строение числовых НОД и НОК полугрупп
Далее будем рассматривать множество всех неотрицательных действительных чисел R+ и мультипликативную полугруппу SR+, содержащую 0 и 1, с топологией, индуцированной топологией числовой прямой.
Лемма 1. Если S связно, то S= или S=R+.
Доказательство. Пусть S связное множество в R+. Тогда S является промежутком. Поскольку и , то . Если в S нет элемента c > 1, то . В противном случае числа (N) принимают сколь угодно большие значения. Поскольку S - промежуток, то для всех N. Отсюда R+.
Лемма 2. Если несвязно, то .
Доказательство. Предположим, что . Тогда в силу несвязности существуют такие числа , что и . Так как , то . Тогда . Полученное противоречие завершает доказательство.
Лемма 3. Если , то или =R+.
Доказательство. Очевидно, - полугруппа. Пусть и . Тогда существует элемент . Докажем, что . Возьмем произвольное . Пусть натуральное N таково, что . Тогда из следует . Отсюда . Лемма доказана.
Лемма 4. Пусть S - НОД-полугруппа и пространство S несвязно. Тогда:
1) (0,с)S для любого ,
2) если , то и для любого .
Доказательство. 1) Если в интервале (0,1) нет элементов из S, то заключение очевидно. Пусть (0,1)S. Предположим, что (0,c)S для некоторого . Не теряя общности, будем считать, что . Так как S несвязно, то по лемме 2 существует s[0, 1]S. Возьмем в S ненулевой элемент и положим b=asS. Пусть d=НОД(a,b). Поскольку 0<s<1, то sn0 при n. Тогда sN < c для некоторого натурального N, и, значит, sNS. По свойству 8, пункт (3), НОД(a/d, b/d)=1. Поскольку b/d:a/d=sS, то элемент a/d необратим в S. Очевидно, необратимым является и (a/d)N. По свойству 11, пункт (5), имеем НОД((a/d)N, (b/d)N)=1. Из (b/d)N:((a/d)N=sNS следует, что НОД((a/d)N, (b/d)N)=(a/d)N. Значит, элемент (a/d)N ассоциирован с 1, т. е. обратим. Получили противоречие. Следовательно, (0, с)S для любого .
2) Если , то заключение справедливо. Пусть и . Тогда по лемме 3 существует s. Предположим, что для некоторого с >1. Возьмем в S элемент и положим b=asS. Поскольку s>1, то sn+ при n. Следовательно, sN>c для некоторого натурального N, и, значит, sNS. Повторяя рассуждения, проведенные выше, заключаем: для любого .
Предложение 2. Пусть S - НОД-полугруппа. Если пространство S несвязно и , то S нульмерно.
Доказательство. Докажем, что при выполненных условиях в любом интервале , где , есть точки, не принадлежащие S. Доказывая от противного, предположим, что [a,b]S для некоторых . Возможны два случая.
Случай 1. Пусть 0<a<. Докажем, что найдется n0N, для которого ab. В самом деле, допуская, что b<a для всех nN и, переходя в неравенстве b<a к пределу при n, получили бы ba<b. Откуда b>a для всех натуральных n>n0. Тогда что невозможно по лемме 4.
Случай 2. Пусть . Возьмем такое число с > a, чтобы 1<c<b. Рассуждая, как и в случае 1, получаем cb для некоторого n0N. Тогда что также невозможно по лемме 4.
Докажем, что S нульмерно. Пусть V - произвольное открытое множество в S и . Требуется показать, что существует такое открыто-замкнутое в S множество U, что . Поскольку топология в S индуцируется топологией числовой прямой, то существуют такие числа a и b , что . Если , то это и есть открыто-замкнутое множество U. Пусть левее s в интервале нет точек множества S, а правее - есть, и точка с - одна из них. По доказанному выше существует точка , такая, что . В этом случае - искомое открыто-замкнутое множество U. Аналогично рассматривается случай, когда левее точки s в интервале есть точки множества S, а правее нет, и случай, когда интервал содержит точки из S и справа и слева от s. Предложение доказано.
С помощью предложения 2 можно получить следующую топологическую классификацию числовых НОД-полугрупп.
Предложение 3. Любая НОД-полугруппа S относится к одному из следующих классов:
1. S связно.
2. S нульмерно, замкнуто в R+ и 0 - предельная точка для S.
3. S нульмерно, не замкнуто в R+ и 0 - предельная точка для S.
4. Точка 0 изолирована в S.
Доказательство. По лемме 1 существуют полугруппы , которые являются связными множествами. Пусть несвязно. Если =, то 0 - изолированная точка. Если существует элемент , то для любого N и последовательность сходится к 0. Следовательно, 0 - предельная точка для S, множество при этом может быть как замкнутым в R+, так и не замкнутым. Предложение доказано.
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |