Дипломная работа по предмету "Физика и энергетика"


Топологічна оцінка ймовірності утворення власних точкових дефектів в кристалах А VI В VI зі структурою NaCI


2

Міністерство освіти і науки України

Прикарпатський національний університет імені Василя Стефаника

ТОПОЛОГІЧНА ОЦІНКА ЙМОВІРНОСТІ УТВОРЕННЯ ВЛАСНИХ ТОЧКОВИХ ДЕФЕКТІВ В КРИСТАЛАХ AB ЗІ СТРУКТУРОЮ NaCl

КВАЛІФІКАЦІЙНА РОБОТА

з фізики

м. Івано-Франківськ

2008 р.

ЗМІСТ

Вступ ………………………………………………………………………….... 3

1. КРИСТАЛИ ………………………………………………………………… 4

1.1. Кристали ……...……………………………………………………… 4

1.2. Дефекти в кристалах ………………………………………….. 6

2. АТОМНІ ДЕФЕКТИ В РЕАЛЬНИХ НАПІВПРОВІДНИКАХ ………. 8

2.1. Атомні дефекти ……………………………………………………… 8

2.2. Точкові дефекти кристалічної решітки ……………………..….. 15

3. КЛАСИФІКАЦІЯ ДЕФЕКТІВ …………………………..……………… 24

3.1. Вакансії і міжвузлові атоми …………………………………..….. 24

3.2. Домішкові атоми ……………………………………………..……. 28

4. ТОПОЛОГІЧНА ОЦІНКА ЙМОВІРНОСТІ УТВОРЕННЯ ВЛАСНИХ ТОЧКОВИХ ДЕФЕКТІВ В КРИСТАЛАХ AB ЗІ СТРУКТУРОЮ NaCl ……………………………………...ткненні|співзіткненні| з|із| атомами кристала зміщують їх з|із| вузлового| положення|становища| в міжвузля|.

Досвід|дослід| показує, що при цьому на утворення одного дефекту необхідна в середньому енергія близько 3,6 еВ| в германії і близько 4,2 еВ| в кремнії.

Дослідження ефекту Холла, оптичних і фотоелектричних властивостей кристалів кремнію і германію з|із| радіаційними дефектами показують, що ці дефекти створюють складну структуру енергетичних рівнів.

Встановлено|установлено| також, що принаймні частина|частка| з|із| цих рівнів обумовлена не простими дефектами Френкеля, а складнішими центрами, утвореними з|із| дефектів Френкеля і приєднаних ним атомів кисню.

3.2. Домішкові атоми

Кристал, в якому всі вузли ґратки заповнені тільки|лише| атомами даної речовини і ґратка якого безмежно тягнуться після всіх напрямів|направлень|, ми називатимемо ідеальним кристалом. Проте|однак| всі реальні кристали мають різну недосконалість, що спотворює строгу|сувору| періодичність кристалічної решітки.

Дослідження особливостей дифракції рентгенівських променів показує, що в реальних кристалах правильне розташування атомів в ґратах зберігається лише в межах невеликих областей з|із| лінійними розмірами ~0,1-1 мкм|. Самі ж ці області злегка розорієнтовані| один щодо|відносно| одного (повернені па малі кути|роги,кутки|), утворюючи так звану мозаїчну структуру.

Іншим типом недосконалості є|зявляються,являються| домішкові атоми. Останні можуть бути в ґратах кристала в двох станах: або займати|позичати,посідати| вузли ґратки, заміщаючи деякі атоми основної речовини кристала (твердий розчин заміщення), або упроваджуватися|запроваджуватися,впроваджуватися| між вузлами ґратки (твердий розчин впровадження). У обох випадках кожна домішка|нечистота| характеризується певною максимальною розчинністю, тобто максимальною концентрацією домішкових атомів, яку можна створити в ґратках при даній температурі при термодинамічній рівновазі. Відзначимо також, що обидва типу твердих розчинів сильно відрізняються по величині коефіцієнтів дифузії домішок|нечистот|: як правило, при одній і тій же температурі коефіцієнти дифузії міжвузлових атомів на декілька порядків|лади| більше, ніж коефіцієнти дифузії вузлових| атомів.

Недосконалістю в реальних кристалах є|зявляються,являються| також порожні|пусті| вузли ґратки або вакансії, лінійні дислокації і гвинтові дислокації. Вказана недосконалість може створювати додаткові рівні енергії електронів, які впливають на багато фізичних процесів в напівпровідниках.

Розглянемо|розгледимо| спочатку поведінку домішкових атомів. Найбільш простій і ясний випадок ми маємо для домішок|нечистот| елементів III і V груп періодичної системи в напівпровідниках підгрупи IVB (кремній, германій). Такі домішки|нечистоти| утворюють твердий розчин заміщення. На це, зокрема, указують|вказують| дуже малі значення їх коефіцієнтів дифузії.

Атом будь-якого елементу V групи має 5 валентних| електронів, і, відповідно, його іонний залишок|остача| несе позитивний заряд +5е. Проте|однак| для утворення тетраедричних| валентних звязний в ґратах типу алмазу необхідно тільки|лише| 4 електрони. Тому при заміні атома основних ґрат на атом домішки|нечистоти| ми одержимо|отримаємо| один «зайвий» електрон. Останній рухатиметься|сунутиметься| в полі іонного залишку|остачі| і решти валентних електронів, тобто в полі ефективного заряду +е, утворюючи систему, подібну атому водню (рис. 3.3,а). Цей додатковий електрон може бути відщеплений

Рис. 3.3. Вузловий атом елементу V групи (а) і III групи| (б) в ґратках типу алмазу

від свого вузла ґрат під дією теплових коливань, освітлення і т. п., і тоді він перетвориться на електрон провідності. При цьому утворення вільної позитивної дірки (як у разі|в разі| розриву звязків у власному напівпровіднику) не буде. З|із| сказаного видно|показно|, що домішки|нечистоти| елементів V групи в напівпровідниках з|із| ґратами алмазу є|зявляються,являються| донорами.

В випадку вузлового| атома елементу III групи (B, А1 і ін.) є|наявний| всього 3 валентних електрона, тобто не вистачає одного електрона для завершення валентних звязків. Цей бракуючий електрон може бути запозичений з числа сусідніх електронів звязку. При цьому утворюється вакантне місце серед сусідніх електронів звязку, або позитивна дірка, яка опиниться в полі заряду іонного залишку|остачі| (+3е) і чотирьох електронів звязку (--4е), тобто в полі ефективного заряду -е (рис. 3.3,б). Оскільки|тому що| у вакансію, що утворилася, можуть переходити інші електрони звязку, то дірка рухатиметься|сунутиметься| навколо|навкруг,довкола| домішкового центру, і ми знову одержимо|отримаємо| водне подібну систему, але|та| тільки|лише| з|із| нерухомим негативним|заперечним| зарядом і рухомим|жвавим,рухливим| позитивним зарядом.


Під впливом теплового руху, освітлення і інших| зовнішніх дій у вакансію, що утворилася, можуть бути покинуті більш видалені|віддалені| електрони звязку. Тоді замість дірки, повязаної з даним домішковим центром, зявиться|появиться| дірка у іншому місці, і ця дірка, унаслідок|внаслідок| послідовного запиту в неї інших електронів звязку|, переміщатиметься в кристалі. Цей процес аналогічний відриву звязаного| електрона від донора V групи і може бути названий|накликати| звільненням|визволенням| звязані дірки і перекладом|переведенням,переказом| її у вільний стан. Утворення ж електрона провідності при цьому не відбувається|походить|. З|із| сказаного видно|показно|, що атоми елементів III групи в ґратках типу алмазу є акцепторами.|зявляються,являються|

Домішкові центри, які можуть віддавати або, відповідно, приймати тільки|лише| один електрон і, отже, знаходитися|перебувати| тільки|лише| в двох різних зарядових станах, ми надалі називатимемо простими. З|із| сказаного вище витікає, що простий донор є такий домішковий центр, з|із| яким при завершених валентних звязках звязаний один електрон. І, аналогічно, простий акцептор є такий домішковий центр, з|із| яким при завершених валентних звязках| звязана одна дірка.

Прості донори можна охарактеризувати задавши|задаванням| найнижчий | рівень енергії E невідщепленого електрона (основний стан). Аналогічно, для простого акцептора можна задати один рівень енергії захопленого електрона. Такі рівні на відміну від рівнів електронів провідності, є|зявляються,являються| локальними, оскільки|тому що| електрони, що їх займають|позичають,посідають|, розташовані|схильні| безпосередньо близько від домішкових центрів. Енергія іонізації донора I на цій діаграмі рівна (E -- E). Аналогічно, енергія необхідна для занедбаності електрона з|із| валентної зони на акцептор (або, іншими словами, енергія відриву звязаної дірка від акцептора I), рівна -- Е).

Енергію іонізації домішкових атомів в кристалі можна експериментально визначити або з|із| температурної залежності постійної Холла («термічна» енергія іонізації), або із|із| спектральних залежностей коефіцієнта поглинання світла і фотопровідності («оптична» енергія іонізації).

Значення енергії іонізації атомів III і V груп в германії і кремнії, визначені з|із| оптичних вимірювань|вимірів| при гелієвих температурах. Енергії іонізації в германії мало відрізняються один від одного і близькі до 0,01 еВ|. Цей результат добре пояснюється в теорії «воднево-подібних» домішкових атомів.

Унаслідок|внаслідок| малої енергії іонізації атоми цих| елементів в германії практично повністю іонізовані|, вже починаючи|розпочинаючи,зачинаючи| з|із| температур ~10 К і вище. Енергії іонізації цих елементів в кремнії, особливо акцепторів III групи, відрізняються значно сильніше. Проте|однак| і тут (за винятком In) енергія їх іонізації невелика, і тому при температурах, близьких до кімнатних (і вище), атоми цих елементів| теж|також| іонізовані| майже повністю. З іншого боку, розчинність більшості елементів III і V груп (окрім|крім| Bi і Т1) в германії і кремнії дуже велика (наприклад, для In, Ga, P в германії вона наближається до 1021 атомів/см). Тому, вводячи|запроваджуючи| елементи III і V груп в германій і кремній, можна в широких межах міняти|змінювати,замінювати| концентрацію електронів і дірок і, відповідно, електропровідність. Подібні домішки|нечистоти|, що створюють дрібні|мілкі| рівні енергії і здатні|здібні| входити в грати напівпровідника у великих концентраціях, ми називатимемо легуючими домішками|нечистотами|.

Якщо домішкові атоми належать групі періодичної системи, яка відрізняється більше ніж на одиницю від групи основної речовини напівпровідника, то система локальних рівнів енергії виявляється|опиняється| складнішою. При цьому, по-перше, зявляються|появляються| два або декілька різних рівнів енергії для одного і того ж атома. І, по-друге, виникають глибокі рівні енергії.

Розглянемо|розгледимо|, наприклад, мідь, яка створює в германії| три акцепторні рівні, видалені|віддалені| на 0,04 і 0,33 еВ| від верху валентної зони і на 0,26 еВ від дна| зони провідності. Це означає|значить|, що атом міді може приєднати до себе три електрони. Приєднання першого електрона (з числа електронів, створюючи валентні звязки в кристалі) вимагає найменшої анергії Е -- Е= 0,04 еВ. При цьому атом міді перетворюється| в відємний| іон Сu і одночасно утворюється рухома|жвава,рухлива| позитивна дірка. Тому ми можемо, також сказати, що цей електронний перехід є відрив звязаної дірки від акцептора, на що необхідна анергія іонізації 0,04 еВ|. Для відриву захопленого| електрона від іона Сu і переходу|переведення,переказу| його в рухомий стан необхідна найменша енергія 0,79--0,04=0,75 еВ|, де 0,79 еВ є ширина забороненої| зони| германію (при 0 К). Аналогічно, енергія Е-- E=0,33 еВ на цій діаграмі є приріст енергії центру при приєднанні до іону| Сu другого електрона (з числа електронів звязку) а перетворенні його в іон Сu. При цьому серед електронів| звязку (у валентній зоні|) утворюється друга рухома|жвава,рухлива| дірка, в ми можемо сказати, що енергія 0,33 еВ| є енергія відриву другої дірки, повязаної з іоном Сu. Енергія відриву електрона від іона Cu є 0,79 -- 0,33 = 0,46 еВ|. І, нарешті|урешті|, енергія|, приєднання третього| електрона, тепер уже до іона Cu (або, що те ж, енергія відриву третьої дірки), рівна Е -- E = 0,79 -- 0,26 = 0,53 еВ|. При цьому утворюється іон Сu. Енергія відриву захопленого третього електрона є Е -- Е = 0,26 еВ|. Таким чином, вузлові| атоми міді в германії є|зявляються,являються| потрійними|потроєними| акцепторами і можуть існувати в чотирьох зарядових станах: Сu, Сu, Cu, Сu.

Число різних локальних рівнів енергії для вузлових| домішкових атомів в германії у ряді випадків узгоджується з|із| очікуваним|сподіваним| на підставі електронної структури атома і тетраедричного характеру|вдачі| валентних звязків в германії. Розглянемо|розгледимо|, наприклад, елементи II групи Zn і Cd. Їх атоми мають по два валентні електрони: (4s)2 і, відповідно, (5s)2. Проте|однак| для утворення завершених тетраедричних| звязків в германії необхідно чотири електрони. Недолік|нестача| двох електронів приводить|призводить,наводить| до утворення двох дірок, повязаних з цими атомами і тому вони є|зявляються,являються| подвійними акцепторами.

Елементи Мn (VII група) і Fe, Co, Ni (VIII група) всі мають на самій зовні|зовнішньо|шній оболонці по|та| два електрони| (4s)2. Мабуть|очевидно|, саме| ця пара електронів і бере участь в утворенні валентних звязків|вязок|. Але|та| тоді знову для завершення валентних звязків не вистачає двох електронів, і атоми цих елементів теж|також| є|зявляються,являються| подвійними акцепторами.

Елементи I групи Сu, Ag|поліг|, Аu мають по одному валентному електрону: (4s), (5s) і (6s). Тому при вузловому| положенні|становищі| цих атомів з|із| ними повязані три дірки, і вони є|зявляються,являються| потрійними|потроєними| акцепторами. Проте|однак| у|в,біля| Аu виявляється ще і донорний| рівень, повязаний з можливістю|спроможністю| відщеплювання валентного електрона.

Розглянемо|розгледимо|, нарешті|урешті|, ще приклад|зразок| Ті (VI група). Він має шість валентних електронів (5s)2 (5p)4, тоді як для завершення| валентних звязків їх| необхідно тільки|лише| чотири. Відповідно до цього вузлові атоми теллура| створюють в германії| два донорні| рівні.

РОЗДІЛ 4. ТОПОЛОГІЧНА ОЦІНКА ЙМОВІРНОСТІ УТВОРЕННЯ ВЛАСНИХ ТОЧКОВИХ ДЕФЕКТІВ В КРИСТАЛАХ AB ЗІ СТРУКТУРОЮ NaCl

Проблема утворення власних точкових дефектів (ВТД) в напівпровідниках представляє великий науковий і практичний інтерес. Запропоновані до теперішнього часу на основі різних феноменологічних моделей оцінки ентальпії утворення вакансій [3, 6] і антиструктурних дефектів (АСД) [6] в сполуках AB неоднозначні. Проте у ряді випадків вимагається лише виділити переважаючий тип ВТД і надалі використати експериментальні дані по інтегральній оцінці області гомогенності. Для цього необхідний порівняльний аналіз енергії утворення різних ВТД, який може бути здійснений за допомогою достатньо простих методів.

В роботах [5, 6] була запропонована проста модель оцінки стабільності фрагмента кристала з вакансійними дефектами, яка ґрунтується на застосуванні принципів теорії графів. В цьому наближенні розглядається топологічна матриця розміром , -- число елементів (вершин) системи, симетрична відносно головної діагоналі. Її елементами являються топологічні відстані між вершинами графа (атомами). Якщо в якості одиниці вимірювання відстані вибрати довжину звязку, то є цілим числом, яке відповідає мінімальній кількості звязків між атомами і . Напівсума елементів топологічної матриці носить назву числа Вінера [6], і, як було показано в [1, 2, 5], мінімум числа Вінера відповідає стабільності системи.

Авторами [5, 6] були розроблені принципи топологічного підходу до ґраток, що містять однорідні атоми. Проте значний практичний інтерес представляє розповсюдження цього підходу на багатокомпонентні і перш за все бінарні системи, що і зроблено в даній роботі на прикладі кристалів із структурою NaCl.

Рис. 7.1. Топологічна матриця бінарної системи.

На рис. 7.1 була представлена узагальнена топологічна матриця бінарної системи, де і -- діагональні підматриці, що відповідають звязкам між атомами А і В відповідно, а -- підматриця взаємодії між різносортними атомами. Для знаходження елементів кожної з підматриць ми використовували наступну процедуру: помножили кожний блок, що відповідає однорідній структурі алмазу, на топологічний коефіцієнт, який залежить від природи звязуючих атомів для підматриць, , , відповідно. Для системи з однорідних атомів всі вказані коефіцієнти рівні 1.

Фрагмент кристалічної структури AB зображений на рис. 7.2. В якості моделі ми вибрали мінімально можливий 36-атомний кластер, що має рівну кількість атомів А і B. Його розміри були підібрані так, щоб центральні атоми 1 і 2 були оточені трьома координаційними сферами кожний. Ця вимога обумовлена тим, що на рівні третіх сусідів відбувається «замикання» кільцевих структур ґраток NaCl, які «зачіпають» досліджуваний центральний атом, що є істотним з погляду топологічного підходу. Крім того, розраховані інтеграли перекриття орбіталей центрального атома з орбиталями атомів оточення [10] стають достатньо малими саме на рівні третіх сусідів.

2

Рис. 7.2. Фрагмент кристалічної структури сполуки AB

Для збереження стехіометрії і незмінності числа атомів на «поверхні», якою служить IV сфера оточення, створюються посадочні місця, тобто рівна кількість вакансій обох сортів на максимальній відстані від місця розташування дефектного вузла. Значення числа Вінера, утвореного таким чином «ідеального кристала» склало .

При утворенні вакансії один з центральних атомів переміщається у відповідне місце на поверхні, у випадку дивакансії А--В обидва центральні атоми заповнюють поверхневі вакансії. При утворенні комплексу «вакансія--АСД» один з центральних атомів переноситься на поверхню, а інший -- на місце того, що був перенесений. Утворення ізольованого АСД моделюється шляхом переміщення центрального атома у відповідне вакантне місце з подальшим заповненням вакансії, що утворилася, чужорідним атомом з протилежної поверхні (рис. 7.3).

Рис. 7.3. Схема утворення ВТД:

а -- вакансія, б -- дивакансія, в -- комплекс «вакансія -- АСД», г -- АСД, д -- парний АСД.

У всіх випадках нами були розраховані числа Вінера модельованих дефектів і були визначені їх відповідні зміни по відношенню до «ідеального кристалу». Результати наведені в таблиці.

Таблиця.

Зміни числа Вінера при утворенні ВТД

№ п/п

Дефект

а. Ізольований монодефект

1.

Вакансія

2.

Вакансія

б. Бінарний комплекс

5.

Дивакансія

6.

Парний АСД

7.

Комплекс

8.

Комплекс

Як було показано [3, 5, 6], критерієм стабільності або максимальної ймовірності утворення тієї або іншої структури з постійним числом атомів являється мінімум або ; тому що величини одного порядку. З даних таблиці можна зробити висновок про те, що найвищою стабільністю повинні володіти ізольовані і парні АСД, потім йдуть комплекси «вакансія--АСД», а також моновакансії, і найменше енергетично вигідні дивакансії. Для отримання більш детальної інформації необхідна порівняльна оцінка величин топологічних коефіцієнтом. У дусі використовуваного підходу, очевидно, їх слід повязати з геометричними характеристиками атомів -- радіусами елементів або слетеровськими експонентами, що характеризують просторове поширення валентних орбіталей атомів [10]. Очевидно, чим більше величина перекриття електронних оболонок атомів при однаковій міжатомній відстані, тим міцніший звязок і, отже, менше відповідне значення числа Вінера. Тому системі атомів з більшим радіусом або більшим перекриттям електронних оболонок відповідає менший топологічний коефіцієнт, і навпаки. Отже, якщо відношення ковалентних радіусів , то справедливе співвідношення . Параметр можна представити як перехідний випадок від до і для його оцінки взяти середнє між ними. Незначні відємні значення для деяких ізольованих АСД пояснюються, перш за все, граничними умовами досліджуваного кластера малих розмірів.

З урахуванням вищевикладеного, ми можемо виписати ряд досліджених дефектів в порядку зростання їх чисел Вінера, що відповідає зменшенню ймовірності їх утворення.

Випадок I.

, тобто :.

Випадок II.

, тобто :, де для скорочення запису Вінера утворення дефектів замінені позначеннями самих дефектом.

Довідкові дані про ковалентні радіуси елементів [19] свідчать про те, що ряд сполук слід віднести до випадку I. Для них теорія передбачає домінування антиструктурного розупорядкування в підґратці А, що узгоджується як із запропонованими в літературі моделями [1], так і з фактом експериментального дослідження.

Випадок II реалізується для сполук. Модель передбачає переважне утворення АСД дефектів в підґратці В. Це узгоджується з думкою більшості дослідників.

ВИСНОВОК

В роботі була запропонована проста модель оцінки стабільності фрагмента кристала із структурою NaCl з вакансійними дефектами, яка ґрунтується на застосуванні принципів теорії графів. В цьому наближенні розглядається топологічна матриця розміром , -- число елементів (вершин) системи, симетрична відносно головної діагоналі. Напівсума елементів топологічної матриці носить назву числа Вінера. Мінімум числа Вінера відповідає стабільності системи.

У всіх випадках нами були розраховані числа Вінера модельованих дефектів і були визначені їх відповідні зміни .

Таким чином, топологічний підхід дозволяє досить простим чином проаналізувати порівняльну ймовірність утворення різних дефектів в бінарних системах. Отримані результати і порівняння їх із експериментом свідчать на користь запропонованого методу. До його недоліків слід перш за все віднести відсутність строгого теоретичного обґрунтовування, а також трудності у співвідношенні чисел Вінера із кількісною оцінкою енергії утворення дефектів і в описі систем із впровадженими в міжвузля або зміщеними із рівноважних положень атомами.

ЛІТЕРАТУРА

1. Bonchev D., Mekenyan O., Fritsche H-G.//Phys. St. Sol. (a). 1979. V. 55. N 1.

2. Bonchev D., Mekeyan O., Polansky O. E. // Graph Theory and Topology in Chemistry / Ed. by R. B. King, D. H. Rouvnay. Amsterdam--Oxford -N. Y.--Tokyo--Elsevier, 1987.

3. Bublik V. T. // Phys. St. Sol. (a). 1978. V. 45. N 2.

4. Figielsri Т. // Рhуs. St. Sol. (a). 1987. V. 102. N 2

5. Mekenyan O., Bonchev D., Fritsche H. // Phys. St. Sol. (a). 1979. V. 56. N 2.

6. Van Vechten J. A. // J. Electrochem. Soc. 1975. V. 122. N 3.

7. Wiener H. // J. Am. Chem, Soc. 1947. V. 69. N 11.

8. Ансельм А. И. Введение в теорию полупроводников. -- М.: Наука, 1970.

9. Ашкрофт Н., Мермин Н. Физика твердого тела, Т. 1, 2. -- М.: Мир,1979.

10. Бацанов С, С., Кожевина Л. И. Интегралы перекривання и проблема эффективных зарядов. Новосибирск, 1969. Т. 2.

11. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. -- М.: Наука, 1977.

12. Вайнштейн Б. К., Фридкин В. М., Инденбом В. Л. Современная кристаллография, т. 2. -- М.: Наука, 1979.

13. Ван-Бюрен. Дефекты в кристаллах. -- М.: ИЛ, 1962.

14. Давыдов А. С. Теория твердого тела. -- М.: Наука, 1976.

15. Дефекты в кристаллах и их моделирование на ЭВМ. (Под ред. Ю. А. Осипьяна). -- Л.: Наука, 1980.

16. Жданов Г. С. Физика твердого тела. -- М.: Изд-во Моск. ун-та, 1961:

17. Киттель Ч. Введение в физику твердого тела. -- М.: Наука, 1978.

18. Лейбфрид Г., Брайер П. Точечные дефекты в металлах.-- М.: Мир, 1981.

19. Стрельченко С. С., Лебедев В. В. Соединения AB . Справочник. М., 1984.

20. Физическое металловедение, т. 2, 3 (под ред. Р. Кана). -- М.: Мир, 1968.

21. Халл Д. Введение в дислокации. -- М.: Атомиздат, 1968.



Не сдавайте скачаную работу преподавателю!
Данную дипломную работу Вы можете использовать как базу для самостоятельного написания выпускного проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем дипломную работу самостоятельно:
! Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы.
! Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов.
! Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания.
! Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться.
! Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы.
! Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей.

Особенности дипломных работ:
по экономике Для студентов экономических специальностей.
по праву Для студентов юридических специальностей.
по педагогике Для студентов педагогических специальностей.
по психологии Для студентов специальностей связанных с психологией.
технических дипломов Для студентов технических специальностей.

Виды дипломных работ:
выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института.
магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения.

Другие популярные дипломные работы:

Дипломная работа Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби"
Дипломная работа Технологии работы социального педагога с многодетной семьей
Дипломная работа Человеко-машинный интерфейс, разработка эргономичного интерфейса
Дипломная работа Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края
Дипломная работа Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия
Дипломная работа Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС"
Дипломная работа Разработка системы менеджмента качества на предприятии
Дипломная работа Организация учета и контроля на предприятиях жилищно-коммунального хозяйства
Дипломная работа ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ»
Дипломная работа Психическая коммуникация

Сейчас смотрят :

Дипломная работа Использование дидактических игр для развития познавательного интереса на уроках математики в 5 классе
Дипломная работа Формирование здорового образа жизни средствами ПР "ГУЗ РКДЦ МЗ УР"
Дипломная работа Экономические и социальные аспекты автоматизации управления в технических системах предприятия
Дипломная работа Криптографическая защита информации
Дипломная работа Опека и попечительство
Дипломная работа Учет и анализ выпуска и реализации готовой продукции (на примере ЗАО "ЦИМС")
Дипломная работа Основания признания сделки недействительной
Дипломная работа Общая характеристика правовых форм воспитания детей, оставшихся без попечения родителей
Дипломная работа Планирование и организация физической безопасности как составной части комплексной безопасности предприятия (на примере АЭС)
Дипломная работа Социально–педагогическая программа по профилактике компьютерной зависимости детей и подростков
Дипломная работа Обогащение словарного запаса на уроках развития речи в младших классах вспомогательной школы
Дипломная работа Развитие системы ассессмент-менеджмента на предприятии ООО "Атек"
Дипломная работа Кредитные ресурсы Сбербанка РФ
Дипломная работа Организация работы современной кадровой службы
Дипломная работа Жестокое обращение с детьми