ЗМІСТ
ВСТУП
РОЗДІЛ 1. ЗАГАЛЬНІ ПИТАННЯ НАВЧАННЯ РОЗВЯЗУВАННЯ ЗАДАЧ
1.1 Система арифметичних задач у програмі з математики в початковій школі
1.2 Ступені роботи над текстовими задачами
РОЗДІЛ 2. МЕТОДИЧНА РОБОТА НАД ЗАДАЧАМИ НА ПРОПОРЦІЙНЕ ДІЛЕННЯ
2.1 Види задач на пропорційне ділення та способи їх опрацювання
2.2 Формування умінь розвязувати задачі на пропорційне ділення
2.3 Результати експериментального дослідження
ВИСНОВКИ
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ
ВСТУП
Актуальність теми. Демократизація освіти вимагає від педагогічної науки нових шляхів удосконалення навчально-виховного процесу. „Освіта ХХІ століття - це освіта для людини”, - зазначено в Концепції 12-річної загальноосвітньої школи. «Пріоритетним напрямком оновлення змісту навчально-виховного процесу є гуманізація освіти, що базується на гуманістичних цінностях» [53, 47]. Ось чому авторитарно-дисциплінарні моделі навчання змінюються на «особистісно-орієнтовані, суттєвими ознаками яких є навчання і виховання особистості з урахуванням усіх індивідуальних та фізіологічних процесів, які протікають в організмі дитини» [36, 19]. Це створення умов для творчості, саморозвитку та самовиявлення особистості молодшого школяра.
Особистісне зорієнтоване навчання і виховання є перспективним, оскільки воно виходить із самостійності особистості, її духовності і суверенності. Його метою є формування людини як неповторної особистості, творця самого себе і своїх обставин. Сучасна школа матиме справу з індивідуальністю, самобутністю особистості, оскільки індивідуальність виявляється головним принципом етики і мусить вступати керівним методологічним положенням у вихованні і навчанні.
У системі загальної середньої освіти одне із основних місць займає початкова школа, де закладається фундамент розумових, моральних та емоційно-вольових якостей особистості. Курс математики початкових класів є основою для осмисленого засвоєння математичних знань, формування умінь і навичок, а також і отримання математичної освіти в цілому [55, 103].
Важливу роль у курсі математики початкової школи відіграють задачі. Вони, з одного боку, складають специфічний розділ програми, зміст якого учні мають засвоїти, з другого - виступають як дидактичний засіб навчання, виховання і розвитку школярів.
До проблеми розвязування задач при вивченні математики тією чи іншою мірою зверталися відомі методисти. Психологічний та методичний аспект процесу розвязування задач досліджували: Г.О. Балл, Л.Л. Гурова, С.Д. Максименко, Н.О. Менчинська, Н.А. Побірченко, З.І. Слєпкань, Л.М. Фрідман. Психолого-педагогічні і методичні основи диференційо-ваного навчання розкрито у працях М.І. Бурди, Ю.З. Гільбуха, О.С. Дубинчук, С.О. Логачевської, О.Л. Савченко, І.Є. Унт та ін.
Особливу увагу розвязуванню задач як засобу розвитку мислення, формування системи математичних понять, добору задач до підручників з математики у початковій школі приділяли М.О. Бантова, Г.В. Бельтюкова, М.В. Богданович, М.М. Левшин, М.Г. Моро, Я.А. Король, Л.П. Кочіна, А.С. Пчолко, Н. Уткіна та ін.
Серед системи задач, які є предметом вивчення у початковому курсі математики, важливе місце займають задачі на пропорційне ділення. Розвязування задач на пропорційне ділення «спрямоване на формування в учнів системи математичних знань, вироблення вмінь і навичок математичного моделювання, обчислення, розвитку прийомів розумової діяльності» [15, 71]. Задачі на пропорційне ділення «допомагають розкрити опосередковані звязки математики з навколишнім середовищем і практичною діяльністю людей, реалізувати пізнавальні й виховні функції навчання» [52, 43]. Процес розвязування таких задач сприяє формуванню таких розумових дій як аналіз і синтез, конкретизація і абстрагування, порівняння, узагальнення тощо, а також розвитку функціонального мислення в цілому. Від оволодіння вміннями розвязати задачі залежить не лише підготовка школярів з математики на даному етапі навчання, а й осмислення засвоєння систематичних курсів алгебри, геометрії, фізики, інформатики у наступних класах.
Позитивно оцінюючи наукову і практичну значущість досліджень з даної проблеми, необхідно, разом з цим, відзначити, що ряд аспектів формування вмінь розвязувати задачі на пропорційне ділення залишилися нерозкриті, зокрема - обсяг теоретичних знань про таку задачу і процес її розвязування у початкових класах; визначення рівнів програмних вимог до вироблення вмінь учнів початкової школи розвязувати задачі на пропорційне ділення; добір різнорівневих завдань, спрямованих на формування вмінь розвязувати задачі; способи раціонального поєднання фронтальної, групової та індивідуальної форми роботи на уроках математики при розвязуванні задач на пропорційне ділення.
Отже, актуальність теми зумовлена значущістю досліджуваної проблеми для удосконалення методики розвязування задач на пропорційне ділення у початковій школі, яка враховує особливості навчальної діяльності учнів під час розвязування таких задач, психолого-педагогічні засади вироблення вмінь розвязувати задачі на пропорційне ділення, різнорівневі вимоги до математичної підготовки школярів.
Обєкт дослідження - процес навчання математики у початковій школі.
Предмет дослідження - формування вмінь учнів початкових класів розвязувати задачі на пропорційне ділення.
Мета дослідження - проаналізувати, теоретично обґрунтувати і експериментально перевірити добірку задач на пропорційне ділення на уроках математики у початковій школі.
Гіпотеза дослідження: якщо, навчаючи розв`язуванню задач на пропорційне ділення, враховувати зміст і операційний склад відповідних умінь, рівні програмових вимог до їх формування, психолого-педагогічні характеристики молодших школярів, дидактичні принципи добору завдань, то це підвищить ефективність навчання учнів розвязувати задачі даного типу, а отже, рівень математичного розвитку школярів загалом.
Завдання дослідження:
- на основі аналізу психологічної і навчально-методичної літератури, практики навчання зясувати стан досліджуваної проблеми;
- розкрити зміст і операційний склад умінь учнів розвязувати задачі на пропорційне ділення;
- визначити особливості навчальної діяльності учнів початкової школи під час розвязування задач на пропорційне ділення;
- зясувати обсяг теоретичних знань про такий тип задач і процес їх розвязування;
- розробити добірку завдань, спрямованих на вироблення вмінь розвязувати задачі на пропорційне ділення;
- теоретично обґрунтувати та експериментально перевірити удосконалену методику формування вмінь розвязувати задачі на пропорційне ділення.
Методи дослідження.
1. Теоретичні - системний аналіз психологічної і навчально-методичної літератури з проблеми дослідження (розкриття змісту, вмінь і закономірностей їх формування); семантичний аналіз задач на пропорційне ділення (зясування структурних компонентів задачі і звязків між ними); моделювання педагогічних ситуацій, аналіз та обробка результатів педагогічного експерименту (підтвердження ефективності експериментальної методики);
2. Емпіричні - спостереження, анкетування, тестування, бесіди з учнями і вчителями, вивчення досвіду вчителів, узагальнення власного досвіду викладання математики; формуючий експеримент.
Структура дослідження. Дипломна робота складається із таких основних елементів: вступ, два розділи, висновки, список використаної літератури, додатки.
РОЗДІЛ 1. ЗАГАЛЬНІ ПИТАННЯ НАВЧАННЯ РОЗВЯЗУВАННЯ ЗАДАЧ
1.1 Система арифметичних задач у програмі з математики в початковій школі
Основним засобом, який використовується при вивченні математики для формування знань, умінь і навичок учнів, є задачі. Задачі являються засобом реалізації загальноосвітньої, виховної і розвиваючої цілей. Для формування виділених елементів теоретичних знань і оволодіння учнями відповідними їх видами діяльності необхідно розглядати систему задач, що забезпечує засвоєння навчального матеріалу.
За останні роки в педагогічній психології, дидактиці й методиці навчання математики були проведені дослідження з різних проблем теорії задачі. Значний внесок зробили: Н.Г. Амнєєв, Г.О. Балл, М.І. Бурда, Л.Л. Гурова, В.В. Давидов, О.М. Матюшкін та багато інших [5, 149-150]. У цих дослідженнях вирішуються кардинальні питання постановки задач, їх структури, методики навчання розвязання задач, звязків з відомим в умовах, коли субєкт не має способу (алгоритму) цієї дії.
На думку К.О. Славської, задача з психологічної точки зору - це не тільки обєктивна вихідна ситуація, а насамперед задача, що виникає для людини, тобто обєктивна вихідна проблемна ситуація, обєктивне вихідне співвідношення умов і вимоги, що створює невідповідність між ними. Задачу мають розглядати як особливу форму пізнання дійсності. Тому вона сама виступає як обєкт, що детермінує процес мислення людини.
Якщо аналізувати психологічний аспект розвязування задач, то дослідники відмічають тісний звязок цього процесу з мисленням особистості [49, 74]. Усі компоненти мислення (змістовий, операційний та процесуальний) виявляються в мисленнєвій діяльності особистості. Ця діяльність виникає і формується як процес за умов проблемної ситуації і задачі. Первинно виникає проблемна ситуація, тобто конфлікт, суперечність між обставинами та умовами - між наявними знаннями і актуальним потребами. Це малоусвідомлений процес невизначеності: “Що не так? Що не таке?” тощо.
Усвідомлення проблемної ситуації становить уже перший етап у її розвязанні. На другому етапі відбувається вирізнення відомого і невідомого. Внаслідок цього проблемна ситуація перетворюється на задачу [40, 76]. У структурі задачі вирізняють умову та вимоги. Для характеристики умови використовують такі ознаки, як звичність-незвичність ситуації, а також характер поставленої умови (словесний опис, зображення, реальна ситуація) і ступінь вираження в ситуації суттєвого відношення між відомими і невідомими величинами, що є ключовим у розвязанні задачі.
Задачі мають задум (ідею, зміст). Важливою характеристикою вимог є чіткість їх формулювання. Задачу характеризує також співвідношення між умовами і вимогами. В умові можуть міститися всі елементи; необхідні для розвязання задачі, можуть бути зайві елементи тощо.
Прикладом нашого підходу до поняття задачі є трактування, що його дав О.Ф. Єсаулов. Він пише: “Задача - це більш-менш визначені системи інформаційних процесів, неузгоджене або навіть суперечливе відношення між якими викликає потребу в їхньому перетворенні. Суть розвязання саме і полягає у пошуках подолання шляхів такої неузгодженості” [1, 42].
Р.Е. Басангова визначає задачу як “як обєкт розумової діяльності, що містить вимогу деякого практичного перетворення або відповіді на теоретичне питання за допомогою пошуку умов, що дозволяють розкрити звязки (відношення) між відомими і невідомими її елементами”.
З методичної точки зору поняття “задача” розглядається в роботах М.І. Бурди, Ю.М. Колягіна, В.І. Крупіча, Г.І. Саранцева й ін.
П.І. Сорокін під задачею розуміє обєкт розумової діяльності, що містить вимогу і деякі умови, за яких, ця вимога має бути досягнута. Отже, задача повинна мати такі ознаки: бути носієм знань і умінь, а також засобом їх засвоєння; способом організації і керування пізнавальною діяльністю учнів; однією з форм прояву методів навчання; засобом звязку теорії з практикою [56, 13].
Задачі є і предметом і засобом навчання. Вони є основним засобом забезпечення звязку навчання із життям, політехнічного направлення в навчанні, здійснення міжпредметних звязків всередині математики і останньої з іншими навчальними предметами. На уроках математики навчальний процес в більшості випадків слідує від задач до теорії, а потім від теорії до задач: задачі => теорія => задачі.
Формування умінь розвязувати задачі - одне із головних і складних завдань програми шкільного курсу математики в початкових класах [3]. Складність цього завдання зумовлена багатьма факторами. Однак найбільш суттєвим є той, що в методиці навчання математики в початковій ланці освіти залишилися нереалізованими такі загально дидактичні принципи, як-от: науковості, послідовності, систематичності, звязку теорії з практикою, індивідуального підходу та ін.
Так, ще Я.А. Коменський зазначав, що міцно засвоюється лише те, що добре обґрунтовано. Отже, розвязання тієї чи іншої задачі має бути науково обґрунтованим. Для цього учні повинні знати найелементарнішу класифікацію задач і вміти визначити, до якого саме виду належить та чи інша задача [26, 6].
Задача - це «сформульоване запитання, відповідь на яке можна знайти за допомогою арифметичних дій» [20, 28]. З визначення задачі випливає, що в ній обовязково має міститись якесь запитання. Без запитання задачі немає. Оскільки відповідь на запитання задачі дістаємо в результаті виконання арифметичних дій, очевидно, в ній повинна міститися вимога визначити те чи інше число (або числа) - шукане і, крім того, повинні вказуватися ті числа, за допомогою дій над якими можна знайти шукане. Тому обовязковими елементами будь-якої арифметичної задачі є невідоме (шукане) число (чи кілька таких) і дані числа.
Головна особливість задач полягає в тому, що в них не зазначається, яку саме дію треба виконати над даними числами, щоб дістати шукане. Тому в тексті задачі потрібні непрямі вказівки на той звязок, який існує між даними числами і шуканими і який визначає добір потрібних арифметичних дій та їх послідовності. Це - умова задачі [7, 23]. Умова, яка покликана розкрити звязки між даними і шуканими числами - містить числові і дані задачі.
Учні, як правило, досить легко засвоюють, що в задачі має бути не менше від двох числових даних. Діти часто підміняють задачу формулюванням умови і наслідку, який з неї випливає. Наприклад, складають такі “задачі”: “На гілці сиділо 3 пташки. До них прилетіла ще 1 пташка. Всього стало 4 пташки” [56, 14].
Отже, головні елементи задачі - умова і запитання. Числові (чи буквені) дані - це елементи умови. Шукане завжди міститься в запитанні. Але іноді задачу сформульовано так, що запитання містить у собі частину умови або вся задача викладена у формі запитання.
В навчанні математиці виділяють найбільш важливі функції задач: навчальні, виховні, розвиваючі, контролюючі [8, 287-188].
Навчальні функції спрямовані на формування у школярів системи математичних знань, умінь і навичок (як передбачених програмою, так і таких, що розширяють, поглиблюють її зміст) на різних етапах навчання.
Виховні функції спрямовані на формування пізнавального інтересу,самостійності, навичок навчальної праці, культури математичної мови, графічної культури.
Розвиваючі функції спрямовані на розвиток мислення в учнів, просторових уявлень, на оволодіння ними ефективними прийомами розумової діяльності.
Контролюючі функції спрямовані на встановлення рівня навчання, здібності до самостійного вивчення матеріалу, рівня математичного розвитку учнів і сформованості пізнавальних інтересів.
У звязку з великою кількістю видів математичних задач розглянемо існуючі їх класифікації. Зокрема, у методичній літературі [1; 4; 7; 9; 20; 35 та ін.] можна знайти наступні класифікації.
1. За кількістю невідомих у структурі задач. Ю.М. Колягін пропонує їх класифікувати на навчальні, пошукові та проблемні.
2. За характером обєктів задачі поділяють на практичні та математичні.
3. За відношенням до теорії виділяють стандартні та нестандартні задачі. У ролі основної ознаки стандартних задач вказано наявність у курсі математики таких загальних правил і положень, що однозначно визначають програму розвязання цих задач та виконання кожного кроку цієї програми (тобто мають свій алгоритм розвязування). Нестандартні задачі - це такі, для яких у курсі математики не існує загальних правил або положень, що визначають точну програму їх розвязання.
4. За функціями у процесі навчання розрізняють дидактичні, пізнавальні та розвиваючі задачі. Задачі з дидактичними функціями використовують для підготовки учнів до введення нового матеріалу, а також при його закріпленні: вони несуть функцію застосування теорії, що вивчається. Задачі з пізнавальними функціями мають за мету відпрацювати та поглибити основний зміст математичної дисципліни. Задачі з розвиваючими функціями - це ті, розвязування яких потребує певних знань та вмінь, не передбачених програмою. Саме ці задачі спрямовані на розвиток мислення.
5. Задачі, що стимулюють навчально-пізнавальну діяльність; організують та здійснюють навчально-пізнавальну діяльність учнів; задачі, у процесі виконання яких здійснюється контроль та самоконтроль ефективності навчально-пізнавальної діяльності.
6. Задачі для початкової школи класифікують за змістом: задачі на рух, задачі на пропорційне ділення, на знаходження четвертого пропорційного.
7. За характером вимоги у початковому курсі математики виділяють задачі на обчислення, задачі на побудову, задачі текстові, задачі комбінованого характеру.
Наведені класифікації дозволяють ширше уявити собі проблеми, повязані з методикою навчання молодших школярів розвязувати задачі, спрямовуючи цей процес на розвиток мислення.
Загалом задачі у початковому курсі математики класифікують на прості і складені. При цьому до простих належать 25 видів задач (на розкриття змісту арифметичних дій; на розкриття відношень між числами; задачі, що розкривають звязки між компонентами і результатами арифметичних дій; задачі на збільшення (або зменшення) числа на кілька одиниць ( чи в кілька разів) та ін.) [3, 106-107].
Прості задачі часто використовуються початковому курсі математики і при ознайомленні учнів з іншими сюжетами задач у справі формування в дітей уявлень про величини, їх вимірювання, про звязки, які існують між такими величинами, як ціна, кількість і вартість; маса одного предмета, число предметів і загальна маса; швидкість, час і пройдений шлях; довжина і ширина прямокутника та його площа; норма виробітку за одиницю часу, затрачений час і загальний виробіток, норма витрати яких-небудь матеріалів на один виріб, число виробів і загальна витрата матеріалів на них тощо [17, 3]. Такі задачі розглядаються в 1-4 класах поступово, в міру розширення кола величин, що вводяться у звязку з вивченням відповідних питань і на матеріалі інших вправ.
Аналогічно до того, як прості задачі використовуються для створення наочної опори при розгляді таких питань теорії, як, скажімо, звязок між компонентами і результатами дії, значна група складених задач допомагає дітям усвідомити властивості розглядуваних дій. Це задачі, які ілюструють властивості додавання і віднімання, що вивчаються в I класі, а також властивості множення й ділення, розглядувані в II - IV класах.
Складені задачі, як і прості, використовуються і під час ознайомлення з деякими новими поняттями, новими випадками дій, вони допомагають дітям усвідомити нові для них поняття дробу числа й інші питання курсу [23, 51].
Складені арифметичні задачі відіграють важливу роль у навчанні дітей тих загальних прийомів розумової діяльності, які необхідні для розвязання будь-якої задачі:
а) аналізувати, виділити відоме і невідоме;
б) встановлювати звязки між даними і шуканим;
в) складати план розвязування;
г) перекладати залежності між даними і шуканим, сформульовані в задачі словами, на мову математичних виразів, рівностей, рівнянь;
д) виконувати відповідні дії (розвязувати відповідні рівняння) і знаходити відповідь на запитання задачі;
е) перевіряти розвязання [51, 32].
Складені задачі використовують як наочну конкретну основу для розгляду нових понять, властивостей дій. Цією функцією визначається й місце їх у загальній системі курсу: вони вводяться тоді, коли розглядаються відповідні питання, і в такій кількості, яка потрібна для пояснення нових питань. При цьому спеціальної мети навчити дітей розвязувати задачі двома способами не ставиться. Важливіше, щоб вони могли розвязати її раціональним способом.
Інша група складених задач, що займають велике місце в підручниках для початкових класів школи, повязана з роботою над різними кількісними відношеннями. Такі задачі вводяться після того, як діти достатньо засвоять кількісні відношення і навчаться застосовувати свої знання під час розвязування простих задач, які містять слова “на стільки-то (у стільки-то разів) більше (менше)” в різному контексті.
Складені задачі дають можливість продовжити і розширити та поглибити роботу, спрямовану на ознайомлення дітей з різними величинами і залежністю між ними [62, 23].
Група складених задач, повязаних з необхідністю застосувати знання звязку між такими величинами, як ціна, кількість, вартість, займає важливе місце в підручниках для всіх чотирьох класів. Спеціальна увага приділяється задачам, які розкривають звязки між цими величинами в I - IV класах [35, 4].
У IIІ класі вводиться ряд нових величин (норма витрачання матеріалу на виріб, число виробів, загальна витрата матеріалу; норма виробітку за одиницю часу, витрачений час і загальний виробіток); у IV класі діти ознайомлюються із звязками між швидкістю, часом і відстанню при рівномірному русі, із звязком між сторонами прямокутника і його площею. Усі ці нові питання розглядаються не лише на основі практичних робіт, повязаних із спостереженнями, вимірюваннями, а й на матеріалі розвязування різноманітних сюжетних задач, що показують, для яких практичних питань потрібні здобуті знання, вивчені взаємозвязки між величинами.
Складені задачі поділяють за кількістю дій, якою розвязується та чи інша задача. Це задача на дві, три, чотири дії. Трьома діями розвязуються задачі, які утворилися розширенням задач на дві дії; також до цього типу належать також задачі на знаходження суми двох добутків, різниці двох добутків, різниці двох часток і т. ін. [51, 87].
Метою роботи над задачами є не тільки засвоєння способів їх розвязування, а головним чином формування умінь, необхідних для самостійного розвязування задач програмного мінімуму та подальшого навчання. У підручниках для 1--4 класів є такі задачі, які традиційно називають типовими, а також задачі з конкретним змістом. До типових належать задачі на знаходження четвертого пропорційного (на спосіб прямого і оберненого зведення до одиниці та спосіб відношень), на пропорційне ділення, на знаходження числа за двома різницями, на знаходження середнього арифметичного. Методика розвязування типових задач принципово не відрізняється від розгляду будь-яких інших задач нового виду, тобто включає підготовку, ознайомлення і розвиток умінь [7, 29]. Проте деякі особливості роботи над типовими задачами необхідно враховувати.
Зазначені типові задачі повязані з пропорційними величинами. Розвязування їх ґрунтується на знанні відповідних звязків між величинами. Ознайомлення з величинами провадиться одночасно з розкриттям звязків між ними. Звязки формулюються у вигляді висновків. Наприклад, якщо відомо ціну і кількість, то вартість можна знайти дією множення. Типові задачі мають деякі характерні ознаки, які враховуються на підготовчому етапі роботи. Необхідно також враховувати взаємозвязки між окремими типовими задачами. Особливу увагу слід приділити задачам на знаходження четвертого пропорційного до трьох даних.
Розвязування задач на знаходження четвертого пропорційного способом зведення до одиниці запроваджується в 3 класі. Розгляду задач передує тривала робота над їх розвязуванням на визначення ціни, кількості та вартості. Вона проводиться у вигляді гри "в магазин" [8]. Під час гри учні вчаться розвязувати задачі на знаходження вартості. ціни і кількості. Характерною особливістю в цій роботі є те, що, аналізуючи задачі, вчитель вимагає від учнів пояснення, які величини відомі і які треба знайти.
Розвязування задач на знаходження середнього арифметичного ґрунтується на правилі: щоб знайти середнє арифметичне кількох чисел, треба їх суму поділити на кількість цих чисел. Це правило вводиться на основі аналізу готового розвязання задачі.
Ознайомлення дітей із задачами на пропорційне ділення проводять у 4 класі. Спочатку вони виконують підготовчі завдання [7, 31].
У початковому курсі математики арифметичні задачі використовуються протягом усіх чотирьох років початкового навчання. Система їх розміщення, природно, збігається з логікою розгортання понять, що вводяться, ознайомлення з арифметичними діями і їх властивостями тощо. Особливість задач, які для цього відбираються, максимальна їх простота. Вони мають бути цілком зрозумілі, близькі дітям за сюжетом, просто викладені, без будь-яких незрозумілих, нових для дітей слів, які б потребували додаткових пояснень. Саме цій меті підпорядкована більша частина задач, широко представлених у програмі і в підручниках для кожного року навчання.
Оскільки в 1 класі діти вперше ознайомлюються з діями додавання і віднімання, а в 2 з діями множення і ділення, то тут передбачається використання простих текстових задач, насамперед спрямованих на розкриття змісту цих дій. Жодного означення дій у початкових класах не вводиться, і тому їх зміст діти мають усвідомити, головним чином, на основі практичних операцій з різними множинами предметів і в процесі розвязування відповідних простих сюжетних задач, що дають змогу перевести ці операції в план розумових дій [39, 134].
Отже, добір і розміщення текстових задач для 1-4 класів підлягає логіці розгляду нових питань арифметичної теорії і відповідає вимозі поступового ускладнення завдань, що зумовлюється деякими особливостями форми подання математичних звязків і відношень, які визначають вибір арифметичної дії, необхідної для розвязування задачі. Ускладнювати завдання можна, ввівши нові величини, розглядаючи з дітьми нові для них звязки.
Однією з функцій складених задач є розвиток здобутих знань, удосконалення їх у процесі застосування в змінених умовах. Але складені сюжетні задачі, введено в початковий курс математики не лише для цього. Одна з їх функцій - навчити дітей “перекладу” словесно заданих відношень і звязків між різними величинами, числами, на мову математичних виразів, рівностей, рівнянь. Цій меті підпорядковані і добір задач, і система їх розміщення в часі, і методика роботи над ними.
Ця система забезпечує поступовий перехід від простого до дедалі складнішого: від складання простих виразів і рівнянь у процесі розвязання задач на одну дію до складання виразів з 2-3 діями при розвязуванні досить легких за структурою складених задач. Поступове наростання труднощів у таких вправах можливе тільки тоді, коли вчитель розуміючи завдання, що стоять перед ним, використовуватиме для цього пропоновані вправи з підручника [23, 54].
Лише вчитель може визначити, яку задачу і коли можна запропонувати дітям, яке завдання доцільно повязати з розвязуванням цієї задачі: в одному разі досить вказати дію, за допомогою якої розвязується задача, в іншому - скласти за нею вираз чи рівняння, ще в іншому - доцільно розібрати хід розвязування за діями, послідовно зясовуючи роль кожної з них і коментуючи здобуті результати.
Отже, серед типових складених задач важливе місце займають задачі на пропорційне ділення. Саме цей вид задач є предметом нашого дослідження.
1.2 Ступені роботи над текстовими задачами
Розвязати математичну задачу - це значить знайти таку послідовність загальних положень математики (означень, аксіом, теорем, правил, законів, формул), використовуючи які до умов задачі чи до їх наслідків (проміжних результатів розвязання), одержуємо те, що вимагається в задачі, - її відповідь.
Вченими обґрунтовано, що психологічною основою формування вмінь розвязувати текстові задачі є основні положення теорії поетапного формування розумових дій (О.М. Леонтьєв, П.Я. Гальперін, Н.Ф. Тализіна та ін.) у синтезі з основними положеннями асоціативно-рефлекторної теорії (Д.Н. Богоявленський, Є.Н. Кабанова-Меллер, Н.О. Менчинська та ін.). Уміння розвязувати текстові задачі виробляються ефективно, якщо:
1) подавати повну орієнтовну основу дій;
2) при первинному поясненні розгорнуто подавати зразок розвязування задачі з фіксацією складових операцій;
3) опрацьовувати виконання окремих дій, які входять до складу загального вміння шляхом розвязання спеціальних вправ;
4) використовувати різні види моделей задачної ситуації;
5) забезпечувати різні види діяльності (репродуктивну, продуктивну, творчу) та тривалість процесу формування вміння [4, 43].
Робота над задачами не повинна зводитись до формування навичок розвязування задач спочатку одного виду, потім другого і т. д. Основна мета - навчити дітей свідомо встановлювати певні звязки між даними і шуканим у різних життєвих ситуаціях, передбачаючи поступове ускладнення їх. Щоб добитися цього, вчитель повинен передбачити в методиці навчання розвязування задач одного виду різні ступені, які мають свою мету.
На першому ступені вчитель готує дітей до розвязування задач розглядуваного виду. На цьому ступені учні повинні засвоїти звязки, на основі яких вони вибиратимуть дії в процесі розвязування таких задач.
На другому ступені вчитель ознайомлює учнів з розвязуванням задач розглядуваного виду. Тут учні навчаються встановлювати звязки між даними і шуканим і на цій основі вибирати арифметичні дії, тобто вони навчаються переходити від конкретної ситуації, вираженої в задачі, до вибору відповідної арифметичної дії. Внаслідок такої роботи учні ознайомлюються з способом розвязування задач цього виду.
На третьому ступені вчитель закріплює вміння розвязувати задачі розглядуваного виду. На цьому ступені учні мають навчитися розвязувати будь-яку задачу розглядуваного виду незалежно від її конкретного змісту, тобто вони мають узагальнити спосіб розвязування задач цього виду [29, 19-20].
Узагальнено структура процесу розвязування задач подана на рис.
Норма витрати бензину |
Час роботи |
Загальна витрата бензину |
|
однакова |
4 год8 год |
36 л? |
|
Що стосується сутності поняття “вміння розвязувати текстові задачі”, його звязок із знаннями і навичками, то під вмінням розуміємо готовність і здатність учнів початкової школи самостійно і свідомо розвязувати ці задачі. В процесі навчання математики доцільно виділяти окремі й узагальнені вміння. До окремих вмінь відносять вміння розвязувати задачі певного виду. Якщо учень переносить засвоєні дії на нові види задач, правильно і самостійно розвязує текстові задачі широкого кола, то відповідні вміння є узагальненими. Кінцевим результатом навчання є узагальнені вміння.
Загальне вміння розвязувати текстову задачу утворює складний комплекс, що включає активне оперування математичними знаннями і відповідними вміннями й навичками, досвід у застосуванні знань і певну сукупність розумових дій, які необхідні для розвязання [60, 47].
Вироблення вмінь учнів початкової школи розвязувати текстові задачі передбачає ознайомлення їх із поняттям ”текстова задача” і процесом її розвязування; ознайомлення учнів із структурними компонентами задачі (умова, вимога, дані відомі, невідомі, шукані), їх особливостями (умова і вимога звязані між собою; в умові має бути не менше двох числових даних, звязаних між собою і з шуканим; вимога виступає орієнтиром пошуку розвязування; вибір дій відбувається шляхом встановлення взаємозвязків між даними і шуканими та ін.).
У тісному звязку із знаннями предметом цілеспрямованого формування є вміння виділяти складові компоненти в тексті задачі, встановлювати повноту, обґрунтовувати правильність (неправильність) побудови текстової задачі, переформульовувати і самостійно їх складати.
На підставі визначених теоретичних основ нами удосконалена методика формування загального уміння розвязувати складені задачі, в якій визначено мету і зміст кожного з зазначених етапів. На відміну від чинних підручників, ми пропонуємо проводити цілеспрямовану підготовку до введення поняття про складену задачу. На етапі підготовчої роботи засобом спеціальних завдань у дітей формуються уявлення: про те, що за двома певними числовими даними можна відповісти на кілька запитань; про те, що різні задачі можуть мати однакові розвязання; про неможливість відповісти на запитання задачі, якщо числових даних бракує; про необхідність вибору числових даних для відповіді на запитання задачі; про існування задач, на запитання яких не можна відповісти одразу; про існування задач, що складаються з двох простих задач, які повязані за змістом; про те, що аналіз може складатися з двох циклів - кожний з яких відповідає певній з двох простих задач [23, 53].
Традиційно ознайомлення з поняттям “складена задача” здійснюється в 2-му класі на задачах на знаходження остачі, й ці задачі пропонуються учням май же протягом усієї теми. Але учні запамятовують спосіб розвязування і при розвязуванні нової задачі наслідують його, не звертаючись до розгорнених міркувань. Тому ознайомлення з поняттям “складена задача” та процесом її розвязування проводиться на різноманітних математичних структурах задач. Такий підхід спонукає учнів до засвоєння дій з розвязування задачі, а не до заучування плану розвязування [35, 3].
Формування поняття про складену задачу та ознайомлення з процесом розвязування складених задач здійснюється за допомогою порівняння задачі з двома запитаннями та відповідної складеної задачі; порівняння простої та складеної задач, які мають однакові умови; вибору необхідних і достатніх ознак для розпізнавання складеної задачі; підведення під поняття “складена задача”; виведення наслідків про належність або неналежність задачі до поняття “складена задача”. Спеціально опрацьовується уміння виконувати аналітичний пошук розвязування задачі - спочатку до задач подаються готові схеми аналізу, потім - діти повинні самостійно заповнити схему аналізу на картці з друкованою основою, а далі складають її самі. Аналогічно формується вміння розбивати складену задачу на прості та визначати порядок розвязування простих задач.
Істотним в організації діяльності учнів на етапі ознайомлення з поняттям “складена задача” (або “задача”) є її спрямованість не на розвязання кожної конкретної задачі, а на оволодіння комплексом умінь, на оволодіння цим поняттям [49, 74].
Формування загального вміння розвязувати складені задачі реалізується за допомогою систем навчальних задач для 2-го-4-го класів. Навчання розвязувати складені задачі доцільно здійснювати на різноманітних математичних структурах задач, не зосереджуючись на відпрацюванні розвязання задачі певної структури. Істотним у методиці ознайомлення із задачами нової математичної структури є введення їх на основі або порівняння зі схожими простими задачами, або на основі продовження сюжету простої задачі, або на основі зміни запитання простої задачі до даної умови, або на основі зміни умови або запитання складеної задачі відомої математичної структури.
Таким чином, досліджується вплив цих змін на розвязування задачі; задачі нової математичної структури зіставляються з задачами вже відомими, що полегшує їх засвоєння. Крім того, застосовується й такий методичний прийом, коли задача нової структури подається без зіставлення з відомими структурами, що спонукає відтворення повного складу дій, які містить загальне уміння розвязувати складені задачі.
При формуванні вміння розвязувати складені задачі в 2-му - 4-му класах учням пропонуються складені задачі різноманітних математичних структур. У 3-му класі проводиться робота з узагальнення поняття “складена задача”, а також математичних структур складених задач на знаходження суми, різниці тощо, школярі вчаться складати обернені задачі; розпочинає формуватися дія синтетичного пошуку розвязування задачі [18, 21].
На матеріалі задач з пропорційними величинами, на знаходження суми чи різницеве (кратне) порівняння двох добутків або часток основна увага приділяється опрацюванню дій визначення істотних ознак та узагальнення математичної структури і способу розвязування задач. Дослідження задач відбувається за такими факторами: за зміною групи пропорційних величин; за зміною числових даних; за зміною шуканих задачі; за зміною співвідношень, що задані в задачі: сума значень величини замінюється їх різницевим, а потім й кратним співвідношенням; за зміною величин, для значень яких дано або треба знайти суму, різницеве чи кратне відношення; визначивши вплив цих змін на план розвязування задач, ми виділяємо істотні ознаки математичних структур задач та узагальнюємо плани їх розвязування [4, 41].
Усе це слід ураховувати, навчаючи дітей розвязувати задачі. Один з істотних моментів цього навчання полягає в тому, щоб діти навчилися самостійно виконувати первинний аналіз тексту задачі, відділяючи відоме від невідомого. Важливо, щоб вони вміли не тільки вичленити із задачі числові дані, а й пояснити, що означає кожне з них у контексті, що сказано про те число, яке треба знайти, і т.д. Важливо, щоб у процесі первинного аналізу зверталася увага не лише на виділення даних і шуканого, а й на звязки між ними, викладені в тексті задачі.
РОЗДІЛ 2. МЕТОДИЧНА РОБОТА НАД ЗАДАЧАМИ НА ПРОПОРЦІЙНЕ ДІЛЕННЯ
2.1 Види задач на пропорційне ділення та способи їх опрацювання
Задачі, повязані з пропорційними величинами, належать до типових задач. Серед типових є задачі на знаходження четвертого пропорційного (на спосіб прямого і оберненого зведення до одиниці та спосіб відношень), на пропорційне ділення, на знаходження числа за двома різницями.
Розвязування задач, повязаних з пропорційними величинами, ґрунтується на знанні відповідних звязків між величинами; наприклад, коли відомі ціна товару, його кількість, то можна знайти вартість, виконавши дію множення [9, 213]. Отже, для успішної роботи над розвязуванням задач цих видів треба передбачити в підготовчій роботі ознайомлення з новими величинами і розкриття звязків між ними.
Задачі на пропорційне ділення вводять у 4 класі. Ці задачі включають дві змінні величини, повязані з пропорційною залежністю, і одну сталу, причому дано два або більше значень однієї змінної і суму відповідних значень другої змінної: доданки цієї суми шукані. Відповідно до кожної групи величин, повязаних пропорційною залежністю, можна виділити 6 видів задач на пропорційне ділення, чотири з яких - з прямою пропорційною залежністю величин, а дві - з оберненою.
У початкових класах розвязують задачі на пропорційне ділення лише з прямою пропорційною залежністю величин. Ці задачі наведено в таблиці 2 [3; 7].
№ задач |
Величини |
Задачі |
|||
|
ціна |
кількість |
вартість |
||
I |
Стала |
Дано два або більше значень |
Дано суму значень, які відповідають кількості. Знайти доданки |
Дівчинка купила по однаковій ціні 1 кг груш і 2 кг яблук. Всього вона заплатила 18 грн. Скільки коштували окремо груші і яблука? |
|
II |
Стала |
Дано суму значень, які відповідають вартості. Знайти доданки |
Дано два або більше значень |
Дівчинка купила по однаковій ціні груші і яблука, всього 3 кг. За груші вона заплатила 12 грн., а за яблука 6 грн. Скільки було куплено окремо кілограмів яблук і груш? |
|
III |
Дано два або більше значень |
Стала |
Дано суму значень, які відповідають ціні. Знайти доданки |
У магазині продали однакову кількість сорочок і штанів. Сорочка коштувала 80 грн., а штани 100 грн. За всі продані речі виручили 540 грн. Скільки коштували окремо сорочки і штани? |
|
IV |
Дано суму значень, які відповідають вартості. Знайти доданки |
Стала |
Дано два або більше значень |
У магазині продали однакову кількість сорочок і штанів. Сорочка з штанами коштувала 180 грн. За всі сорочки виручили 240 грн., а за всі штани 300 грн. Скільки коштувала сорочка і скільки коштували штани? |
|
У початкових класах задачі на пропорційне ділення розвязують лише способом знаходження сталої величини.
У процесі ознайомлення з задачами на пропорційне ділення краще пропонувати їх не в готовому вигляді, а скласти разом з дітьми із задач на знаходження четвертого пропорційного. Це допоможе дітям побачити звязки між задачами цих видів, що швидше приведе учнів до узагальнення способу їх розвязування.
Учням пропонують скласти задачу за її коротким записом:
Ціна |
Кількість |
Вартість |
|
Однакова |
6 зошитів 4 зошити |
12 грн. ? |
|
Розвязавши задачу, складену за даною умовою, вчитель записує замість знака запитання число, знайдене у відповіді ( 8 грн.). Потім він пропонує знайти суму чисел, які показують вартість зошитів (20 грн.), і скласти задачу за новою умовою:
Ціна |
Кількість |
Вартість |
|
Однакова |
6 зошитів 4 зошити |
? 20 грн. ? |
|
Діти складають задачі на пропорційне ділення, ставлячи два запитання:
Скільки заплатив перший покупець?
Скільки заплатив другий покупець?
Учитель пояснює, що ці два запитання можна замінити одним:
Скільки грошей заплатив кожний покупець?
В остаточному вигляді задачу формулюють так: “Два хлопчики купили зошити по однаковій ціні. Перший купив 6 зошитів, а другий 4. Усього вони заплатили 20 грн. скільки грошей заплатив кожний хлопчик?”
Про що треба дізнатися в задачі?
Що означає “кожний”?
Чи можна відразу дізнатися, скільки заплатив перший хлопчик?
Чому не можна?
Чи можна відразу визначити ціну зошита?
Чому не можна?
Чи можна відразу дізнатися, скільки купили зошитів на 20 грн.?
Чому можна?
Що визначимо в першій дії; другій; третій; четвертій?
Розвязання задачі записують у формі окремих дій з поясненнями. Потім розвязують готові задачі. У цьому разі треба спочатку розчленити запитання задачі на два запитання, потім зясувати, яке з шуканих чисел має бути більше і чому; далі слід перейти до складання плану розвязування, провадячи міркування від запитання до числових даних. Розвязання перевіряють, встановлюючи відповідність між числами, знайденими у відповіді, і отримати число, задане в задачі [41, 132].
Можливі й інші підходи до введення задач на пропорційне ділення. Можна, наприклад, почати з розвязування готових задач, а пізніше виконати роботу щодо перетворення задачі на знаходження четвертого пропорційного в задачу на пропорційне ділення, порівнявши як самі задачі, так і їх розвязання.
Для узагальнення способу розвязування розглядають задачі на пропорційне ділення I виду з іншими групами величин, після чого вводять задачі II виду, а трохи пізніше - III і IV видів. При цьому поряд із розвязуванням готових задач слід включати вправи творчого характеру на складання і перетворення задач [43, 213].
М.В. Богданович [7] пропонує ознайомлювати дітей із задачами на пропорційне ділення у 4 класі. Спочатку учні виконують підготовчі завдання. Підготовка учнів до ознайомлення із задачами на пропорційне ділення складається з таких етапів:
1. Розвязування задач на дві дії, першою з яких с задача на знаходження суми двох доданків, а друга -- на ділення на рівні частини.
Задача. Магазин продав до обіду чотири ящики помідорів, а після обіду -- З таких самих ящики. Всього продали 70 кг помідорів. Скільки кілограмів помідорів було в одному ящику?
До обіду Після обіду
70 кг
Рис. 1
-- Розглянемо умову задачі. (Учень читає.)
Прочитайте запитання задачі. (Учень читає.)
Що сказано про масу помідорів в ящику, проданих до обіду і після обіду? (Маса помідорів в ящику однакова.)
Що треба знати, щоб дізнатися, скільки кілограмів помідорів в одному ящику? (Щоб дізнатися, скільки кілограмів помідорів в одному ящику, треба знати, скільки всього ящиків з помідорами продали і скільки всього кілограмів помідорів продали.)
Чи відомо, скільки всього кілограмів помідорів продали? (Відомо.)
Чи відомо, скільки всього ящиків помідорів продали? (Невідомо.)
Що треба знати, щоб дізнатися, скільки всього ящиків помідорів продали? (Треба знати, скільки ящиків помідорів продали до обіду і скільки після обіду.)
Чи відомо, скільки ящиків помідорів продали до обіду і після обіду окремо? (Відомо.)
Про що дізнаємося спочатку? (Скільки всього ящиків помідорів продали.)
Яку дію треба виконати? (Дію додавання.) Чому треба виконати дію додавання? (Число всіх ящиків помідорів дорівнює сумі чисел 4 і 3.)
Скільки буде? (7.)
Що означає число 7? (7 ящиків з помідорами продали за день.)
Про що дізнаємося тепер? (Скільки кілограмів помідорів в одному ящику.)
Якою дією про це дізнаємось? (Дією ділення.)
Чому треба виконати дію ділення? (У семи ящиках 70 кг помідорів, а в одному ящику -- в 7 разів менше.)
Скільки буде? (10.)
Що означає число 10? (В одному ящику 10 кг помідорів.)
2. Розвязування задач на три дії, першою з яких є задача на знаходження суми двох доданків, друга -- на ділення на рівні частини, а третя -- на знаходження добутку як суми однакових доданків.
Задача. Магазин продав до обіду 4 ящики помідорів, а після обіду -- З таких самих ящики. Всього продали 70 кг помідорів. Скільки кілограмів помідорів продали до обіду (або скільки кілограмів помідорів продали після обіду)?
До обіду -- ? кг Після обіду
Мал. 2.
-- Розглянемо умову задачі.
Ми дізналися, що в одному ящику 10 кг помідорів. Яку дію треба виконати, щоб дізнатися, скільки кілограмів помідорів продали до обіду? (Треба виконати дію множення.)
Чому? (В одному ящику 10 кг помідорів, а в чотирьох ящиках буде 4 рази по 10 кг. Треба 10 помножити на 4, буде 40.)
Що означає число 40? (До обіду продали 40 кг помідорів.)
До обіду Після обіду -- ? кг
Мал. 3
-- Скільки кілограмів помідорів продали після обіду? (30 кг)
Як дізналися? (10 помножили на 3, буде 30.)
Чому виконували дію множення? (В одному ящику 10 кг помідорів, а в трьох ящиках -- у 3 рази більше.)
Поступово задачі на пропорційне ділення ускладнюються. Розглянемо пару аналогічних задач. Учні, розвязавши першу задачу колективно, наступну задачу розвязують за аналогією.
Задача 1. Для обклеювання однієї кімнати купили 5 рулонів шпалер, а для другої -- 3 таких самих рулони. Всього купили 80 м шпалер. Скільки метрів шпалер купили для першої кімнати?
Задача 2. Для обклеювання однієї кімнати купили 5 рулонів шпалер, а для другої--3 таких самих рулони. Всього купили 80 м шпалер. Скільки метрів шпалер купили для другої кімнати?
Для 1-ої кімнати -- ? м Для 2-ої кімнати
Мал. 4.
На дошці записано план розвязання першої задачі.
Скільки всього рулонів шпалер купили?
Скільки метрів шпалер в одному рулоні?
Скільки метрів шпалер купили для першої кімнати?
--До кожного запитання плану виберіть дію і поясніть, чому таку дію вибрали.
На дошці записано розвязання другої задачі.
1) 5+3=8;
2)80:8-10;
3)10*3 = 30.
-- Поясніть розвязання другої задачі.
Також учням можна запропонувати таке завдання:
Розглянути малюнок, виконати необхідні обчислення і сказати, скільки олівців в одній коробці (рис. 5).
У процесі аналізу завдання вчитель ставить такі запитання:
Скільки коробок зліва? Справа?
Скільки всього коробок?
Як дізнатися, скільки олівців в одній коробці?
48 олівців
Мал. 5.
Далі учні вчаться розвязувати задачі на пропорційне ділення самостійно. Розглянемо таку задачу.
Задача. Дівчинка купила 3 зошити для себе і 2 зошити для однокласниці. За всі зошити вона заплатила 1 грн. Скільки грошей має віддати дівчинці однокласниця за зошити?
Задачу пропонують розвязати самостійно, але перед цим слід зясувати, як знайти ціну одного зошита, що треба знати, щоб обчислити вартість покупки.
Розвязування підготовчих задач активізує діяльність учнів при опрацюванні задач нового типу.
Розглянемо фрагмент уроку на тему "Ознайомлення із задачею на пропорційний поділ", де описана методика опрацювання таких задач.
Учням пропонують розвязати задачу: "Купили 3 зошити в лінійку і 2 зошити в клітинку за тією самою ціною. За зошити в лінійку заплатили 54 коп. Скільки грошей заплатили за зошити в клітинку?" (за таблицею).
Ціна |
Кількість |
Вартість |
|
Однакова |
3 2 |
54 коп. ? |
|
Діти розвязують задачу окремими діями з поясненням у запитальній формі. У заздалегідь заготовлену таблицю на дошці вчитель записує суму вартостей всіх зошитів, знайдену учнями, і знаки запитання. Учні складають задачу на пропорційний поділ з двома запитаннями:
Скільки грошей заплатили за зошити в лінійку?
Скільки грошей заплатили за зошити в клітинку?".
Вчитель повідомляє, що ці два запитання можна замінити одним.
Чи можна одразу дізнатися, скільки грошей заплатили за зошитив лінійку? (Ні).
Що треба знати, щоб дізнатися, скільки грошей заплатили за зошити в лінійку? (Ціну зошита і кількість куплених зошитів у лінійку).
Чи відома кількість зошитів у лінійку? (Відома).
Чи відома ціна зошита в лінійку? (Невідома).
Що сказано про ціну зошита в задачі? (Ціна зошита в лінійку і клітинку однакова).
Чи можна дізнатися, скільки зошитів купили на 90 коп.? (Можна).Складіть план розвязування задачі.
Далі учням пропонують розвязати задачу на пропорційний поділ самостійно.
1. За 4 м шовку заплатили 80 грн. Яка ціна 1 м шовку?
80 : 4 = 20 (грн.)
2. У 6 банках 12 л вишневого соку. Скільки літрів соку в 1 банці?
12 ? 6 = ? (л).
В одному сувої 12 м сукна, а в другому - 8 м. Скільки метрів сукна у двох сувоях разом? (+).
В одному бідоні 10 л молока. Скільки літрів молока у 3 таких бідонах? (*).
Поступово вводяться задачі на пропорційне ділення з іншими трійками величин.
Задача. Двоє мулярів мурували будинок, одержуючи за робочий день однакову плату. Перший муляр працював 2 дні, а другий 3 дні. Скільки грошей одержав кожен муляр, якщо разом вони одержали 500 грн?
Після ознайомлення з умовою вчитель звертає увагу учнів на характер запитання:
-- Про що треба дізнатися в задачі? (Скільки грошей одержав кожен муляр).
Що означає вираз «кожен муляр»? (Це означає, скільки грошей одержав перший муляр і скільки другий).
Отже треба знайти відповідь на два окремих запитання:
1) Скільки грошей одержав перший муляр?
2) Скільки грошей одержав другий муляр?
Далі учні розвязують задачу самостійно, користуючись коротким записом умови.
Задачу учні розвязують окремими діями. Підсумовуючи роботу, вчитель повторює весь хід міркування, властивий задачам на пропорційне ділення. Для узагальнення способу розвязування задач на пропорційне ділення корисно практикувати вправи на перетворення задач. Наприклад, можна за задачею на знаходження четвертого пропорційного скласти задачу на пропорційне ділення. Такі вправи допоможуть дітям побачити схоже в способах розвязування.
2.2 Формування умінь розвязувати задачі на пропорційне ділення
У початкових класах учні розвязують задачі майже на кожному уроці математики, міра навантаження при цьому різна. Для ознайомлення з новими видами задач здебільшого відводяться окремі уроки. Певна частина таких уроків планується також для розвитку вмінь учнів розвязувати задачі. На уроках, присвячених вивченню нового арифметичного матеріалу чи застосуванню нових знань для розвязання задач, відводиться в середньому 15-20 хвилин.
При розвязуванні задачі нового виду учень повинен сприйняти її в цілому, застосувати певні знання чи прийоми обчислень в нових умовах, а також усвідомити нові функції обєкта. Отже, розвязування задач -- це творчий процес. Враховуючи вимоги, які ставляться щодо проблемного навчання, вчитель має спрямовувати учнів на самостійне розвязування задач за допомогою відповідних підготовчих вправ чи засобів унаочнення, своєчасно виявляти помилкові міркування в процесі розвязування і подавати їм допомогу (але не послаблювати вольових зусиль), підтримувати емоційний тонус і впевненість у тому, що кожен з них спроможний самостійно розвязати задачу.
У підвищенні активності учнів під час розвязування задач важлива роль відводиться засобам контролю і самоконтролю. Під час ознайомлення та розбору задачі контрольними запитаннями можуть бути такі:
Що відомо в задачі? Що невідомо?
Що означає число, про яке йдеться в задачі?
Чому не можна розвязати задачу однією дією? Скільки дій треба виконати, щоб розвязати задачу?
Якого даного не вистачає щоб знайти відповідь на запитання задачі?
У процесі самостійної роботи (після розбору задачі або одразу після ознайомлення з нею) особливе значення має безпосереднє спостереження вчителя за роботою учнів, за їх записами в зошиті. Час, протягом якого учні записують розвязання, треба повністю відводити для контролю і подання індивідуальної допомоги.
1. Розглянь малюнок і розвязання задачі.
21 кг
Скільки банок на верхній поличці? (3).
Скільки банок на нижній поличці? (4).
Скільки всього банок? (7).
Яка маса варення в усіх банках? (21 кг).
Як дізнатися, яка маса варення в одній банці? (Всю масу поділити на кількість банок з варенням).
Розвязання.
1) 3+4 = 7 (б.) - всього банок з варенням;
2) 21 : 7 = 3 (кг) - маса варення в одній банці.
Відповідь: маса варення в 1 банці 3 кг.
2. Розглянь малюнки, склади задачі і запиши розвязання.
1. Скільки важить одна упаковка з печивом?
35 кг
2. Скільки олівців в одній коробці?
42 олівці
3. Яка ціна 1 метра тканини?
57 грн.
4. Яка ціна одного мяча?
35 грн.
5. Купили два відрізи однакової тканини. У першому відрізі було 4м, а в другому - 5 м. За обидва відрізи заплатили 72 грн. Скільки грошей заплатили за кожний відріз?
І - 4 м - ? 72 грн
ІІ - 5 м - ?
Про що запитується в задачі? (Скільки грошей заплатили за кожний відріз).
Що означає вираз «кожний відріз»? (Це означає, що треба дізнатися, скільки грошей заплатили за перший відріз і скільки за другий).
Отже, треба знайти відповіді на два окремих запитання:
Скільки грошей заплатили за перший відріз?
Скільки грошей заплатили за другий відріз?
Що треба знати, щоб відповісти на ці запитання? (Треба знати ціну одного метра тканини).
Як дізнатися про ціну 1 метра тканини? (Треба вартість усієї тканини поділити на кількість метрів у двох відрізах).
Розглянь розвязання.
1) Скільки метрів тканини у двох відрізах?
5 + 4 = 9 (м)
2) Яка ціна одного метра тканини?
72 : 9 = 8 (грн.)
3) Скільки грошей заплатили за перший відріз?
8 . 4 - 32 (грн.)
4) Скільки грошей заплатили за другий відріз?
8 - 5 = 40 (грн.)
Відповідь: 32 гривні і 40 гривень.
Перевірка: 32 + 40 = 72 (грн.).
Складаємо вирази: 72 : (5 + 4) * 4 = 32.
72 : (5 + 4) * 5 - 40.
6. Два однакові автомобілі перевезли 119 т вантажу. Перший автомобіль зробив 9 рейсів, а другий - 8. Скільки тонн вантажу перевіз кожний автомобіль?
І - 9 р. - ? 119 т
ІІ - 8 р. - ?
Користуючись зразком, дай відповіді на запитання:
ѕ Про що запитується в задачі?
ѕ Що означає вираз «кожний автомобіль»?
ѕ Отже, на які два окремих запитання треба дати відповіді?
Що треба знати, щоб відповісти на запитання задачі?
ѕ Як дізнатися, скільки тонн вантажу перевозить автомобіль за один рейс?
ѕ Склади план і запиши розвязання задачі.
ѕ 9 + ? = ? (р.) - усього рейсів;
ѕ 119 : ? = ? (т) - перевозить 1 автомобіль за 1 рейс;
ѕ ? * ? = ? (т) - перевіз перший автомобіль;
ѕ ? * ? = ? (т) - перевіз другий автомобіль.
Відповідь: 63 т вантажу, 56 т вантажу.
Склади вирази: 119 : (9 + ?) * ? = ?;
119: (9 + ?)*? = ?.
7. З першої ділянки накопали 7 мішків картоплі, а з другої - 8 таких самих мішків картоплі. Всього накопали 750 кг картоплі. Скільки кілограмів картоплі накопали з кожної ділянки?
Про що йдеться в задачі? (Про картоплю, яку накопали з двох ділянок).
Скільки мішків картоплі накопали з першої ділянки? (7).
Скільки мішків картоплі накопали з другої ділянки? (8).
Скільки кілограмів картоплі накопали з двох ділянок? (750 кг).
Про що запитується в задачі? (Скільки кілограмів картоплі накопали з кожної ділянки).
Міркуй далі сам.
Запиши розвязання задачі і поясни, про що дізналися у кожній дії.
1)? + ? = ? (м.);
? : ? = ? (кг);
? * ? = ? (кг);
? * ? = П (кг).
Відповідь: 350 кг картоплі, 400 кг картоплі.
Склади вирази: 750 : (? + ?)-? = 350;
750 :(? + ?)*? = 400.
8. Пасажирський літак за 2 рейси пролетів 3360 км. Перший рейс він пролетів за 4 год, а другий - за 3 год. Яка довжина кожного рейсу, якщо літак увесь час летів з однаковою швидкістю?
І - 4 год - ? 3360 км
ІІ - 3 год - ?
Розвяжи задачу за даним планом.
Скільки часу літак був у польоті?
Яка швидкість літака?
Яку відстань пролетів літак за 4 год?
Яку відстань пролетів літак за 3 год?
Відповідь: 1920 км, 1440 км.
Склади вирази: ? : (? + ?)- 4 = 1920;
(? + ?). 4 = 1440.
9. Першого разу на склад завезли 2 вагони бурого вугілля, а другого - 4 таких самих вагони. Всього завезли 96 т. Скільки тонн вугілля завезли кожного разу?
Вказівка. Це задача на три дії.
У першій дії дізнайся, скільки всього було вагонів з вугіллям.
У другій дії дізнайся про масу вугілля в одному вагоні.
Відповідь: 32 т вугілля, 64 т вугілля.
10. На одну підводу поклали 4 мішки жита, а на другу - 3 таких мішки. У мішках було 420 кг жита. Скільки кілограмів жита поклали на кожну підводу? Відповідь: 240 кг жита, 180 кг жита.
11. Петрик купив 2 альбоми, а Івасик - 3 таких альбоми. За всі альбоми вони заплатили 10 грн. Скільки грошей заплатив за альбоми Петрик, а скільки - Івасик?
Відповідь: 4 гривні, 6 гривень.
12. Добери числові дані і розвяжи задачу.
В одній пачці було ? зошитів, а в другій - ?. За всі зошити заплатили ? грн. Скільки окремо грошей заплатили за кожну пачку зошитів?
13. Господиня купила 3 кг яблук для себе і 2 кг для сусідки. За всі яблука господиня заплатила 10 грн. Скільки грошей має віддати сусідка господині?
Відповідь: 4 гривні.
14. Постав запитання і розвяжи задачу.
Дві групи дітей збирали жолуді. Перша група зібрала 3 мішки жолудів, а друга - 4 таких мішки. Всього діти зібрали 280 кг жолудів. Скільки... ?
Відповідь: 120 кг жолудів, 160 кг жолудів.
15. Відшукай зайві дані і розвяжи задачу.
За перший день швачка пошила 3 однакових плаття, а за другий день - 2 таких плаття. На всю роботу вона витратила 15 м тканини. На третій день закупили ще 20 м тканини. Скільки метрів тканини витрачала швачка кожного дня?
Відповідь: 9м тканини, 6 м тканини.
Перевірка: ? + ? = ?.
16. Склади задачу про однакові ящики з помідорами за коротким записом.
І - 4 ящ. - ? 105 кг
ІІ - 3 ящ. - ?
Відповідь: 60 кг помідорів, 45 кг помідорів.
17. Склади подібну задачу про дві машини з мішками пшениці.
18. Запиши розвязання задачі.
Дві бригади зібрали 5 корзин моркви. Перша бригада зібрала 36 кг, а друга - 24 кг. Скільки корзин моркви зібрала кожна бригада?
І - 36 кг - ? 5 корзин
ІІ - 24 кг - ?
1 (+); 2 (:); 3 (:); 4 (:).
Відповідь: 3 корзини моркви, 2 корзини моркви. Перевірка: 3 + 2 = 5.
19. З двох ділянок зібрали 15 мішків картоплі. З першої зібрали 350 кг картоплі, а з другої - 400 кг. Скільки мішків картоплі зібрали з кожної ділянки?
І - 350 кг - ? 15 мішків
ІІ - 400 кг - ?
Відповідь: 7 мішків картоплі, 8 мішків картоплі.
20. Два однакові автомобілі зробили 17 рейсів. Перший автомобіль перевіз 63 т вантажу, а другий - 56 т. Скільки рейсів зробив кожний автомобіль?
Відповідь: 9 рейсів, 8 рейсів.
21. 20 л молока розлили у 4 каструлі і 6 банок. Місткість каструлі і банки однакова. Скільки літрів молока було в банках?
Зміни запитання задачі так, щоб задача розвязувалася на 4 дії.
Відповідь зміненої задачі: 8 л молока і 12 л молока.
22. Добери умову подібної задачі до запитання:
Скільки літрів бензину заправили в кожний автомобіль?
23. Знайди помилку у розвязанні задачі і розвяжи правильно.
Бензин був у 3 каністрах. У перший автомобіль заправили 40 л бензину, а в другий - 20 л. Скільки каністр бензину було заправлено в кожний автомобіль?
Розвязання.
40 + 20 = 60 (л) - всього бензину;
60 : 3 = 20 (л) - в одній каністрі;
20 : 20 = 1 (к.) - в перший автомобіль;
3 + 1 = 4 (к.) - в другий автомобіль.
Відповідь: ? к. і ? к.
24. Склади задачу за коротким записом і розвяжи її.
Кількість вагонів |
Маса |
||
І потяг II потяг |
? 16 вагонів ? |
540 т 420 т |
|
Відповідь: 9 вагонів і 7 вагонів.
Розглянемо задачі на пропорційне ділення з трійкою величин «швидкість», «час», «відстань».
Задача. Автотуристи першого дня проїхали 360 км, другого -- 240 км. На весь шлях затратили 10 год. Скільки годин були в дорозі туристи щодня, якщо вони їхали з однаковою швидкістю?
Швидкість |
Час |
Відстань |
||
Однакова |
? ? |
10 год |
360 км 240 км |
|
На дошці подано план розвязання задачі.
Скільки кілометрів проїхали автотуристи за 10 год?
Скільки кілометрів за годину проїжджали автотуристи?
Скільки годин були в дорозі туристи першого дня?
Скільки годин були в дорозі туристи другого дня?
-- До кожного запитання плану розвязання задачі виберіть дію.
Розвяжіть задачу окремими діями без письмового пояснення і запишіть скорочену відповідь. Поясніть розвязання задачі.
--До першого запитання задачі виберемо дію додавання. Якщо першого дня автотуристи проїхали 360 км, а другого--240 км, то за 10 год вони проїхали число кілометрів, що дорівнює сумі чисел 360 і 240. Буде 600. За 10 год автотуристи проїхали 600 км. Щоб дати відповідь на друге запитання, треба виконати дію ділення. Щоб знайти швидкість, треба відстань поділити на час. 600 поділити на 10, буде 60. Автотуристи проїжджали 60 км/год.
До третього запитання плану задачі треба вибрати дію ділення. Щоб знайти час руху автотуристі в першого дня, треба відстань поділити на швидкість. Першого дня вони проїхали 360 км зі швидкістю 60 км/год. 360 поділити на 60, буде 6. Першого дня автотуристи були в дорозі 6 год. Щоб дати відповідь на четверте запитання задачі, треба виконати дію ділення. Щоб знайти час, треба відстань поділити на швидкість. Другого дня туристи проїхали 240 км зі швидкістю 60 км/год. 240 поділити на 60, бу- де 4. Другого дня автотуристи були в дорозі 4 год.
Розглянемо задачі на пропорційне ділення з іншою трійкою величин.
Задача. Два робітники працювали однакову кількість днів і відремонтували 80 двигунів. Один робітник ремонтував за день 6 двигунів, а другий -- 4. Скільки двигунів відремонтував кожен робітник?
Продуктивність праці |
Кількість днів |
Загальна кількість двигунів |
||
6 дв. 4 дв. |
Однакова |
? ? |
80 дв. |
|
На дошці записано розвязання задачі.
1) 6+4=10;
2) 80:10 = 8;
3) 6*8=48;
4) 4*8 = 32.
Відповідь
-- Про що дізнавалися кожною дією?
--У першій дії дізналися про число двигунів, які відремонтували обидва робітники за день. їх число дорівнює сумі чисел 6 і 4. Буде 10.10 двигунів відремонтували обидва робітники за день. У другій дії дізналися про кількість днів, протягом яких ремонтували робітники 80 двигунів. За один день робітники ремонтували 10 двигунів і відремонтували 80 двигунів. Треба дізнатися, скільки разів число 10 вміщується в числі 80. 80 поділити на 10, буде 8.8 днів ремонтували робітники двигуни. Якщо перший робітник за день ремонтував 6 двигунів, то за 8 днів він відремонтував у 8 разів більше. Треба 6 помножити на 8, буде 48. Перший робітник відремонтував 48 двигунів. Якщо другий робітник за годину ремонтував 4 двигуни, то за 8 днів він відремонтує у 8 разів більше. Треба 4 помножити на 8, буде 32. Другий робітник відремонтував 32 двигуни.
Розглянемо задачі на пропорційне ділення з іншою трійкою величин.
Задача 1. Кондитерська фабрика випекла за перший день 640 кг печива, а за другий -- 960 кг такого самого печива. Готове печиво розклали в 200 однакових ящиків. Скільки ящиків печива випекла фабрика першого і другого дня окремо?
У комплексній змінній таблиці подано скорочений запис розвязання задачі.
Маса печива в одному ящику |
Кількість ящиків |
Загальна маса печива |
||
Однакова |
? ? |
200 ящ. |
640 кг 960 кг |
|
Складіть план розвязання задачі.
Скільки кілограмів печива випекла фабрика за 2 дні? Скільки кілограмів печива в одному ящику? Скільки ящиків печива випекла фабрика першого дня? Скільки ящиків печива випекла фабрика другого дня?
Розвяжіть задачу, записавши окремі дії. Запишіть скорочену відповідь задачі.
--Прочитайте відповідь задачі.
Задача 2. Потяг везе 1000 т вантажу. В ньому однакова кількість сорокатонних і шістдесятитонних вагонів. Скільки сорокатонних і шістдесятитонних вагонів окремо було в потязі?
У комплексній змінній таблиці подано скорочений запис задачі, на дошці записано початок її розвязання.
Вантажність вагона |
Кількість вагонів |
Загальна маса |
||
40 т 60 т |
Однакова |
? ? |
200 ящ. |
|
Запис на дошці
1)40 + 60=100; 2)1000:100 = ...;
3)……………….. ;
4)………………… .
Відповідь.
-- Запишіть розвязання задачі. Поясніть її розвязання.
Задача 3. З однієї грядки зібрали 16 однакових мішків картоплі, а з другої--4 таких мішки. Маса всієї зібраної картоплі 650 кг. Скільки кілограмів картоплі зібрали з кожної грядки окремо?
У комплексній змінній таблиці подано скорочений запис задачі.
Маса картоплі в мішку |
Кількість мішків |
Загальна маса |
||
Однакова |
6 м 4 м |
? ? |
650 кг |
|
На дошці записано вирази: 650: (6 + 4) * 6; 650: (6 + 4) * 4.
-- Поясніть, чому ці вирази є розвязком задачі.
--Якщо з однієї грядки зібрали 6 мішків картоплі, з другої -- 4 таких мішків, то число всіх мішків картоплі дорівнює сумі чисел 6 і 4.3 умови задачі відомо, що всього зібрали 650 кг.
Якщо 650 поділити на число всіх мішків картоплі, то знайдемо масу картоплі в одному мішку. Частка від ділення числа 650 на суму чисел 6 і 4 -- це маса картоплі в одному мішку.
Помноживши частку числа 650 на суму чисел 6 і 4 на число мішків зібраних з першої грядки, знайдемо масу картоплі, зібраної з першої грядки. Якщо помножити вираз 650 : (6 + 4) на 4, то знайдемо, скільки кілограмів картоплі зібрали з другої грядки.
Задача 4. За перший день у магазин завезли 540 м тканини, а за другий -- 460 м такої тканини. Всього в магазин завезли 50 сувоїв тканини.
Скільки сувоїв тканини завезли кожного дня в магазин?
У комплексній змінній таблиці подано скорочений запис задачі.
Довжина тканини в сувої |
Кількість сувоїв |
Загальна довжина |
|
Однакова |
? сувоїв 50 сувоїв ? сувоїв |
540 м 460 м |
|
-- Користуючись схемою, поясніть, як знайти, скільки сувоїв тканини завезли в перший магазин (в другий магазин).
Значна увага звертається на розвязування учнями задач на пропорційне ділення ІІІ виду.
Задача. Костюм для дорослого коштує 220 грн., а для дитини -- 80 грн. Магазин продав однакову кількість костюмів для дорослих і дітей на суму 2 400 грн. Скільки гривень коштували костюми для дорослих і дітей окремо?
У комплексній змінній таблиці подано скорочений запис задачі.
Ціна |
Кількість |
Вартість |
|
220 м 80 м |
Однакова |
? грн. 2400 грн ? грн. |
|
-- Користуючись схемою, розвяжіть задачу окремим діями без письмового пояснення. Запишіть скорочену відповідь. Прочитайте розвязання.
Також значна увага звертається на самостійне розвязування задач учнями.
-- Складіть і розвяжіть задачу за скороченим записом.
Маса картоплі в мішку |
Кількість |
Маса посилки |
Кількість |
||
Посилка з фруктами Посилка з книжкамиа |
Однакова |
? ? |
7 кг |
30 кг 40 кг |
|
Також доцільно при розвязуванні задач на пропорційне ділення використовувати прийом диференційованого підходу -- урізноманітнення вимог до розвязання задачі на пропорційне ділення, тобто скласти вирази, які будуть розвязком задачі.
У початкових класах рівень уміння учнів розвязувати задачі є визначальним для характеристики стану засвоєння математики в цілому. Основні методи перевірки -- це усне опитування і письмові роботи учнів. Опитування, в свою чергу, включає: усне розвязування простих і складених задач, розвязування задач із записами на дошці чи на окремих аркушах, пояснення розвязань задач, різні види творчої роботи над задачею (порівняння, складання задач тощо).
2.3 Результати експериментального дослідження
Наше дипломне дослідження особливостей методики навчання молодших школярів розвязуванню задач на пропорційне ділення мало теоретико-експериментальний характер. У 2007-2008 навчальному році на основі напрацьованої теоретичної інформації реалізувалися основні положення удосконаленої методики розвязування задач на пропорційне ділення.
Експериментальне дослідження проводилося у Ренівській ЗОШ І-ІІІ ступенів Зборівського району Тернопільської області. Ним було охоплено 40 учнів третіх класів (19 учнів експериментального і 21 учень контрольного).
У процесі розвязування задач на пропорційне ділення ми використовували такі способи допомоги учням:
1) спрощення одного з варіантів самостійної роботи;
2) індивідуалізація вимог до загального завдання;
3) індивідуальна допомога;
4) додаткові завдання до основного виду роботи.
Спрощення одного з варіантів самостійної роботи полягає у тому, що завдання для самостійної роботи готують у двох однакових за навчальною метою варіантах. Проте в одному варіанті дається легше задача. Це може бути задача, яку вже розвязували в класі, або аналогічна, де замінено числові значення. При цьому числові дані добираються так, щоб прийоми виконання дій над ними були вже добре засвоєні, оскільки учні повинні зосереджувати увагу не на обчисленні, а на звязках між величинами.
Індивідуалізація вимог до загального завдання визначається тим, що для всіх учнів на дошці записується одне завдання, а диференціація здійснюється в процесі інструктажу:
а) до умови задачі ставлять два-три питання. Кожен учень знаходить відповіді на стільки запитань, на скільки зможе. Зрозуміло, що бажано відповісти на всі запитання.
б) урізноманітнення вимоги до розвязання задачі полягає в тому, що всім учням пропонується одна і та сама задача, причому одразу дається й додаткове завдання до неї. Такими додатковими завданнями можуть бути: розвязати задачу іншим способом (складанням виразу чи рівняння), скласти і розвязати обернену задачу, записати план розвязання, змінити запитання задачі і знайти на нього відповідь.
Індивідуальна допомога передбачає подачу завдань у двох варіантах. В одному з них міститься додаткова інформація, розрахована на допомогу в розвязанні задачі. Диференціація при цьому реалізується найчастіше через індивідуальні картки:
а) конкретизація задачі - учитель дає учневі вказівку щодо дій, які треба виконати в процесі розвязування задачі, або дає на картці рисунок до умови задачі чи короткий її запис;
б) початок розвязування задачі - вчитель дає вказівки щодо початку розвязування, причому їх слід поєднувати з аналізом задачі і закінчувати виділенням числових даних і запитанням для першої дії;
в) зразок розвязання - вчитель подає на картці дві задачі одного виду, з яких одну вже розвязано, і каже: “Прочитай першу задачу. Розглянь її розвязання. Подумай, що визначили за допомогою першої та другої дій. Прочитай другу задачу і порівняй її з першою. Розвяжи другу задачу”;
г) подання схеми або план у розвязання задачі - схему розвязання задачі здебільшого супроводжують коментуванням кожної дії чи виразу загалом;
д) додаткові пояснення до розвязання задач - правила, тлумачення деяких залежностей тощо. Наприклад: щоб знайти невідоме зменшуване, треба до різниці додати відємник; щоб скласти обернену задачу, треба одне з даних (яке саме?) вважати невідомим.
На етапі закріплення вміння розвязувати задачі на пропорційне ділення самостійну роботу учнів початкових класів ми організовували так, як показано на схемі.
Схема
І етап |
І варіант ІІ варіант Колективний аналіз задачі з підручника |
||
ІІ етап |
Самостійний запис у зошитах розвязаної задачі |
Колективний аналіз подібної задачі (змінено тільки числові дані). Запис розвязання з коментуванням |
|
ІІІ етап |
Самостійне розвязування подібної задачі |
Колективний аналіз подібної задачі (змінено сюжет попередньої задачі) |
|
ІV етап |
Творче завдання |
Самостійне розвязання подібної задачі (змінено числові дані та сюжет) |
|
Під час колективного аналізу задачі (І етап) усно складався план її розвязання. Учні коротко записували розвязок задачі і показували учителю. Хто правильно зробив записи, виконував завдання І варіанту, хто помилився - працював з учителем над завданнями ІІ варіанту.
Для другого етапу ми підбирали задачі для поступового переходу до самостійного їх розвязання. На наступних етапах (ІІ-ІV) роботу ми організовували у такий спосіб.
ІІ етап
І варіант. Самостійно запиши в зошит розвязання задачі за допомогою дій з поясненням.
ІІ варіант. Фронтальна робота. Аналіз подібної задачі (змінено тільки числові дані, щоб полегшити сприймання сюжету задачі). Запис розвязку з коментуванням.
ІІІ етап
І варіант. Самостійно розвяжи задачу (змінено сюжет і числові дані).
ІІ варіант. Фронтальна робота. Аналіз подібної задачі (змінено сюжет попередньої задачі) і самостійний запис розвязування.
ІV етап
І варіант. Склади задачу за схемою і запитанням.
ІІ варіант. Самостійно розвяжи подібну задачу (змінено сюжет і числові дані).
Відповідно до проаналізованих етапів ми використовували чотири види робіт різного рівня складності:
1) запис розвязання задачі;
2) аналіз і розвязання задачі;
3) порівняння задач і їх розвязання;
4) складання задач за схемою (таблицею) та їх розвязання.
Наведемо приклади даних завдань.
І. - Запиши розвязання задачі.
ІІ. - Проаналізуй задачу і розвяжи її.
ІІІ. - Порівняй задачі і розвяжи їх.
Також практикувалося розвязування задач на пропорційне ділення під час усних обчислень. Наведемо приклади таких завдань.
-- Постав запитання до таких задач.
1. На одній машині 40 мішків картоплі, а на другій - 20. Скільки... ? (+).
Маса одного мішка з цукром 50 кг. Яка маса... ? (*)
Три олівці коштують 90 к. Яка... ? (:).
ІІ. Правильно добери дію
В одній каністрі 15 л бензину, а в другій - 20 л. Скільки літрів бензину у двох каністрах?
У 4 банках 12 кг варення. Яка маса варення в одній банці?
В одній банці 4 кг варення. Скільки кілограмів варення в 3 таких банках?
Ціна одного олівця 10 к. Яка вартість 6 таких олівців?
В одному мішку 20 кг картоплі, а в другому - на 30 кг більше. Яка маса другого мішка з картоплею?
Ці та багато інших різноманітних задач можна використовувати для усного розвязання у 4-му класі, для підготовчої роботи, щоб діти краще опанували розвязання складених задач. Адже для формування вміння розвязувати задачі на пропорційне ділення важливий кожен етап роботи.
Головне ж методичне правило -- не поспішати переходити до нового завдання, поки не вичерпані всі або майже всі дидактичні можливості, закладені в попередньому. Про це вчителю слід памятати протягом усього початкового курсу математики, і заохочувати прагнення дитини до занять, прагнути, щоб вона відчула позитивні емоції від результатів своєї праці.
Ми враховували, що розвязування задач на пропорційне ділення неможливе без чіткого вміння розвязувати задачі способом зведення до одиниці. Тобто для того, щоб відповісти на запитання задачі, треба знати величину однієї одиниці (наприклад, ціну, масу одного ящика, продуктивність праці тощо), яка є сталою величиною. Отже, під час розвязування підготовчих задач у дітей формувалися вміння знаходити однакову величину -- величину однієї одиниці за загальними значеннями двох інших величин, що є частиною вміння розвязувати задачі на пропорційне ділення.
Експеримент проводився у 4-му класі. Тому відповідно до програми даного класу ми розробили систему завдань. Робота, яка проводилася нами в експериментальному класі, позитивно вплинула на підвищення якості знань й умінь молодших школярів. Так, учні експериментального класу значно краще виконали запропоновані завдання, ніж учні контрольного.
Для учнів експериментального і контрольного класів ми пропонували два комплексних варіанти завдань, побудованих відповідно до розробленої нами добірки задач на пропорційне ділення.
Метою розробленої добірки вправ було формування таких умінь:
виділення задач на пропорційне ділення серед інших задач;
всебічний аналіз задачі;
пояснення трійки величин та їх взаємовідношення;
пояснення вибору дії;
самостійний запис розвязання задачі даного виду в зошит;
розвязування задач на пропорційне ділення за поданою схемою чи планом розвязання;
порівняння пар задач на пропорційне ділення;
складання задач даного виду за таблицею, схемою, малюнком;
самостійне розвязання подібної задачі.
Розроблена нами методика складання диференційованих завдань ґрунтувалася на рівні засвоєння знань. Було виділено три рівні:
1. Репродуктивний рівень - уміння відтворювати ознаки понять, законів, репродукування відомих способів дій дає змогу розвязувати завдання за взірцем, що не сприяє формуванню достатньо узагальнених і міцних звязків.
2. Конструктивний рівень - міцно засвоєні алгоритми виконання завдань дають змогу використовувати одержані раніше знання у змінених ситуаціях, що сприяє встановленню одиничних звязків між поняттями, поняттям і законом і т. ін. Це, однак, не дає змоги робити глибокі узагальнення, застосовувати знання в нових ситуаціях.
3. Творчий рівень - міцно засвоєні основні положення дають можливість забезпечити високий рівень узагальнення знань, встановити міжпредметні звязки, що, в свою чергую сприяло творчому використанню одержаних знань в нових ситуаціях і дало змогу виявити нові причинно-наслідкові звязки, зробити узагальнення і висновки.
Результати формуючого експерименту свідчать, що використання удосконаленої методики позитивно вплинуло на розвиток умінь і навичок учнів експериментального класу розвязувати задачі на пропорційне ділення. Таким чином, ми отримали результати, що підтвердили наше припущення: уміння і навички учнів експериментального класу розвязувати задачі на пропорційне ділення краще сформовані в учнів експериментального класу, ніж контрольного (див. діаграму).
Діаграма. Сформованість умінь розвязувати задачі на знаходження четвертого пропорційного в експериментальному та контрольному класах (на початку та у кінці експерименту)
Таким чином, експериментальне дослідження показало, що удосконалена методика є ефективною для розвитку умінь і навичок розвязувати арифметичні задачі на пропорційне ділення.
ВИСНОВКИ
Отже, задачі становлять специфічний розділ програми, матеріали якого учні мають засвоїти, і виступають як дидактичний засіб навчання, виховання і розвитку школярів. Проте в учнів середніх класів виникають чималі труднощі під час розвязування задач на пропорційне ділення, однією з причин чого є недостатня сформованість у початкових класах понять про трійки величин та їх співвідношення.
Термін «задача» у початковому курсі математики вживається в різних значеннях. У найширшому плані задача передбачає необхідність свідомого пошуку відповідних засобів для досягнення мети, яку добре видно, але яка безпосередньо недосяжна. У психологічному аспекті задача - це свідома мета, що існує в певних умовах, а дії -- процеси або акти, спрямовані на її досягнення. Під математичною задачею розуміють будь-яку вимогу обчислити, побудувати, довести що-небудь, що стосується кількісних відношень і просторових форм, створених людським розумом на основі знань про навколишній світ. Арифметичною задачею називають «вимогу знайти числове значення деякої величини, якщо дано числові значення інших величин і існує залежність, яка повязує ці величини як між собою, так і з шуканою.
У системі навчання математики учнів початкових класів переважають арифметичні задачі. Робота над цими задачами дає можливість реалізувати ряд функцій у вивченні математики: виховну, розвивальну, дидактичну і контролюючу. Оптимізація навчальних, виховних і розвивальних функцій задач можлива за умови, що учні вже мають певні уявлення про структуру задачі, володіють умінням розвязувати задачі, які можна використовувати як дидактичний засіб. Задачі складаються на основі матеріалів спостережень за явищами природи, практичної діяльності людей, математичних закономірностей, інколи за казковими, фантастичними сюжетами. Під час складання задачі умова не повинна містити неправильні твердження, числові дані мають бути правдоподібними, реальними, умова і запитання мають бути повязані між собою.
Важливим елементом задачі, що дає змогу досягти мети, є розвязування, тобто процес перетворення її умови, який здійснюється на основі знань з тієї галузі, до якої належить задача, певних логічних правил виводу і особливих правил евристичного характеру. Цей процес складається з таких етапів: аналіз задачі, пошук плану розвязування; здійснення знайденого плану розвязування (розвязання); зясування, що здобутий результат задовольняє вимогу задачі (перевірка розвязання); аналіз розвязування (зясування прийомів розвязування, розгляд інших способів розвязування). При цьому виділяють здебільшого такі чотири етапи: ознайомлення із змістом задачі; аналіз задачі і відшукання плану розвязування; розвязання задачі; перевірка розвязування задачі.
У початкових класах розвязують типові задачі. До типових належать задачі на знаходження четвертого пропорційного (на спосіб прямого і оберненого зведення до одиниці та спосіб відношень), на пропорційне ділення, на знаходження числа за двома різницями, на знаходження середнього арифметичного. Методика розвязування типових задач принципово не відрізняється від розгляду будь-яких інших задач нового виду, тобто включає підготовку, ознайомлення і розвиток умінь. Проте деякі особливості роботи над типовими задачами необхідно враховувати, оскільки типові задачі повязані з пропорційними величинами. Розвязування їх ґрунтується на знанні відповідних звязків між величинами. Ознайомлення з величинами провадиться одночасно з розкриттям звязків між ними. Звязки формулюються у вигляді висновків.
Задачі на пропорційне ділення вводять у 4 класі. Ці задачі включають дві змінні величини, повязані з пропорційною залежністю, і одну сталу, причому дано два або більше значень однієї змінної і суму відповідних значень другої змінної: доданки цієї суми шукані. Відповідно до кожної групи величин, повязаних пропорційною залежністю, можна виділити 6 видів задач на пропорційне ділення, чотири з яких - з прямою пропорційною залежністю величин, а дві - з оберненою. У початкових класах розвязують задачі на пропорційне ділення лише з прямою пропорційною залежністю величин і лише способом знаходження сталої величини.
У процесі ознайомлення з задачами на пропорційне ділення краще пропонувати їх не в готовому вигляді, а скласти разом з дітьми із задач на знаходження четвертого пропорційного. Це допоможе дітям побачити звязки між задачами цих видів, що швидше приведе учнів до узагальнення способу їх розвязування. Для узагальнення способу розвязування розглядають задачі на пропорційне ділення I виду з іншими групами величин, після чого вводять задачі II виду, а трохи пізніше - III і IV видів. При цьому поряд із розвязуванням готових задач слід включати вправи творчого характеру на складання і перетворення задач.
Наше дипломне дослідження особливостей методики навчання молодших школярів розвязуванню задач на пропорційне ділення мало теоретико-експериментальний характер. У процесі розвязування задач на пропорційне ділення ми використовували удосконалену методику розвязування таких задач. Для учнів експериментального і контрольного класів ми пропонували два комплексних варіанти завдань, побудованих відповідно до розробленої нами добірки задач на пропорційне ділення. Метою розробленої добірки задач формування таких умінь: виділення задач на пропорційне ділення серед інших задач; всебічний аналіз задачі; пояснення змісту трійок величин; пояснення вибору дії; самостійний запис розвязання задачі даного виду в зошит; розвязування задач на пропорційне ділення за поданою схемою чи планом розвязання; порівняння пар задач на пропорційне ділення; складання задач даного виду за таблицею, схемою; самостійне розвязання подібної задачі.
Робота, яка проводилася нами в експериментальному класі, позитивно вплинула на підвищення якості математичних знань й умінь молодших школярів, тобто учні експериментального класу значно краще виконали запропоновані завдання, ніж учні контрольного. Результати формуючого експерименту свідчать, що використання запропонованої системи задач позитивно вплинуло на розвиток умінь і навичок учнів експериментального класу розвязувати задачі на пропорційне ділення. Отримані результати констатуючого експерименту підтвердили гіпотезу, що використання удосконаленої методики розвязування задач на основі врахування потенційних можливостей досвіду молодших школярів позитивно вплинули на формування умінь учнів експериментального класу розвязувати задачі даного виду.
Таким чином, використання удосконаленої методики розвязування задач на пропорційне ділення є ефективним засобом формування умінь і навичок розвязувати задачі загалом. При цьому підвищується продуктивність уроку, його організація сприяє створенню найкращих умов для активізації навчально-пізнавальної діяльності школярів, поглиблює знання з математики і сприяє розвитку пізнавальних інтересів молодших школярів.
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ
1. Актуальные проблемы методики обучения математике в начальных классах / Под ред. М. Моро, А. Пышкало. - М.: Просвещение, 1977. - 342 с.
2. Бабанский Ю.К. Оптимизация процесса обучения: Общедидактический аспект. - М.: Педагогика, 1977. - 314 с.
3. Бантова М.О. Методика викладання математики в початкових класах. - К.: Вища школа, 1982. - 288 с.
4. Басангова Р.Е. Стимулювання пізнавальної діяльності учнів в ході розвязування задач // Поч. школа. - 1989. - №1. - С. 40-44.
5. Белова Е.С. Развитие диалога в процессе решения школьниками мыслительных задач // Вопр. психологии. - 1991. - №2. - С. 148-153.
6. Богданович М.Б. Дидактичний матеріал з математики для 3-го класу. - К.: Рад. школа, 1977. - 34 с.
7. Богданович М.Б. Методика розвязування задач у початковій школі. - К.: Вища школа, 1990. - 183 с.
8. Богданович М.Б., Козак М.В., Король Я.А. Методика викладання математики в початкових класах: Навч. пос. - Тернопіль: Навч. книга - Богдан, 2001. - 368 с.
9. Богданович М.В. Математика: Підручник для 3 кл. чотириріч. поч. шк. - К.: Освіта, 1994. - 224 с.
10. Богданович М.В. Математика: Підручник для 4 кл. чотириріч. поч. шк. - К.: Освіта, 1994. - 226 с.
11. Богданович М.В. Урок математики в початковій школі: Пос. для вчителя. - К.: Рад. школа, 1990. - 192 с.
12. Василенко І.З. Методика викладання математики в початкових класах. - К.: Просвіта, 1971. - 376 с.
13. Возрастные возможности усвоения знаний / Под. ред. Д.Б. Эльконина, В.В. Давыдова. - М.: Педагогика, 1966. - 232 с.
14. Вопросы дидактики и психологии начального обучения / Под. ред. Б.Г. Ананьева. - Л.: Лен. НИИ пед. АПН РСФСР, 1959. - 98 с.
15. Газдун М.І. Як учити молодших школярів розвязувати задачі // Поч. школа. - 1988. - №11. - С. 70-72.
16. Глушков И.К. Дифференцированная работа над задачами // Нач. школа. - 1985. - №2. - С. 34-35.
17. Гнеденко Б.В. Развитие мышления и речи при изучении математики // Матем. в школе. - 1991. - 31. - С. 3-9.
18. Гора Т., Логачевська С. Диференційований підхід до розвязування текстових задач // Поч. школа. - 2002. - №1. - С. 17-22.
19. Друзь Б.Г. Творчі вправи з математики для початкових класів. - К.: Рад. школа, 1988. - 144 с.
20. Заїка А., Богданович М. Учням про задачу і процес її розвязування // Початкова школа. - 2000. - № 11. - С. 28-29.
21. Занков Л.В. Беседы с учителем: Вопросы обучения в начальных классах. - М.: Педагогика, 1970. - 142 с.
22. Захарова А.М. Розвивальне навчання математики в початковій школі // Психол. і педагогіка. - 2000. - №1. - С. 21-27.
23. Истомина Н.Б., Шикова В.Н. Формирование умений решать задачи различными способами // Нач. школа. - 1985. - №9. - С. 50-54.
24. Король Я.А. Математика в початкових класах: Культура усного і писемного мовлення. - Тернопіль: Навч. книга - Богдан, 2000. - 160 с.
25. Король Я.А. Піднесення культури математичної мови // Поч. школа. - 1995. - №1. - С. 11-12.
26. Король Я.А. Практикум з методики викладання математики в початкових класах. - Тернопіль: Мандрівець, 1998. - 136 с.
27. Король Я.А. Розвязування текстових задач різними способами // Актуальні проблеми розбудови національної освіти. Ч. ІІІ. - К.-Херсон, 1997. - С. 76-78.
28. Король Я.А. Формування практичних умінь і навичок на уроках математики. - Тернопіль: Навч. книга - Богдан, 2000. - 136 с.
29. Король Я.А., Чайка Н.М. Вдосконалення методики роботи над задачами геометричного змісту // Поч. школа. - 1995. - №10-11. - С. 19-22.
30. Корчевська О.П., Козак М.В. Робота над математичними задачами в 4 класі. Поурочні розробки. - Тернопіль: Астон, 2002. - 204 с.
31. Кочина Л., Листопад Н. Математика: навчальні програми для чотирирічної початкової школи // Поч. школа. - 2001. - №7. - С. 17-20.
32. Крутецкий В.А. Психология математических способностей школьников. - М.: Просвещение, 1968. - 204 с.
33. Кухар В.М., Паюл В.М. Скорочений запис задач // Початкова школа. - 1978. - №4. - С. 44-48.
34. Литовченко З.М. Карапузова Н.Д. Культура усного мовлення на уроках математики // Поч. школа. - 1984. - №2. - С. 31-34.
35. Логачевська С., Каганець Т. Вчись розвязувати задачі: Практичний посібник для 4 (3) класу. - К.: Початкова школа, 2001. - 160 с.
36. Маркова А.А. Формирование мотивации обучения в школьном возрасте. - М.: Педагогика, 1983. - 124 с.
37. Матюша І.К. Гуманізація виховання і навчання в загальноосвітній школі. - К.: Просвіта, 1995. - 122 с.
38. Менчинская Н.А., Моро М.И. Вопросы методики и психологии обучения арифметике в начальных классах. - М.: Просвещение, 1965. - 268 с.
39. Методы начального обучения математике. Сб.статей / Под ред. Л.Н. Скаткина. - М.: Просвещение, 1975. - 284 с.
40. Методика начального обучения математике / Под общ. ред. А.А. Столяра, В.Л. Дрозда. - Мн.: Асвета, 1988. - 268 с.
41. Методика начального обучения математике / Под ред. Л.Н. Скаткина. - М.: Просвещение, 1972. - 340 с.
42. Моро М.И. Карточки с арифметическими задачами для 3-го класса. - М.: Просвещение, 1972. - 36 с.
43. Моро М.И., Пишкало А.М. Методика навчання математики в 1-3 класах. - К.: Рад. школа, 1979. - 376 с.
44. Мринська В.І., Лисицина Н.В. Уроки з математики для 1-го і 3-го класів малокомплектної школи. - К.: Рад. школа, 1975. - 160 с.
45. Начальное обучение математике в зарубежных школах / Под ред. Л.Н.Скаткина. - М.: Педагогика, 1973. - 168 с.
46. Обучение в III классе / Сост. Горецкий В.Г., Сунцов Н.С. - М.: Просвещение, 1975. - 114 с.
47. Осинская В.Н. Формирование умственной культуры учащихся в процессе обучения математике. - К.: Рад. школа. - 1989. - 192 с.
48. Основы методики начального обучения / Под ред. Пчелко А.З. - М.: Просвещение, 1975. - 240 с.
49. Пентегова Г.А. Развитие логического мышления на уроках математики // Нач. школа. - 2000. - №11. - С. 74.
50. Пенліченко О.І. Питання методики дидактичних досліджень. - К.: Вища школа, 1992. - 157 с.
51. Поляк Г.Б. Як навчати розвязуванню задач у початковій школі. - К.: Освіта, 1952. - 194 с.
52. Пчолко О.С. та ін. Математика у 3 класі. Посібник для вчителів. - К.: Рад. школа, 1975. - 160 с.
53. Савченко О.Я. Дидактика початкової школи. - К.: Абрис, 1997. - 416 с.
54. Савченко О.Я. Реформування змісту початкової освіти // Поч. школа. - 1996. - №1. - С. 4-8.
55. Савченко О.Я. Сучасний урок в початкових класах. - К.: Магістр-S, 1996. - 384 с.
56. Сорокин П.И. Занимательные задачи про математике. С решениями и методическими указаниями. Пос. для детей 1-4 кл. - М.: Просвещение, 1977. - 170 с.
57. Скаткин Л.Н. Обучение решению простых и составных арифметических задач. - М.: Учпедиз, 1963. - 200 с.
58. Статкевич В.В. О начальном обучении решению задач. - Мн.: Нар. Асвета, 1970. - 346 с.
59. Царёва С.Е. Виды работ с задачами на уроке математики // Нач. школа. - 1990. - №10. - С. 37-42.
60. Царёва С.Е. Приемы первичного анализа задачи // Нач. школа. - 1985. - №9. - С. 46-49.
61. Чекмарёва Т.К. Задания к учебнику математики для 3 класса. Пос. для малокомпл. школы. - М.: Просвещение, 1975. - 90 с.
62. Шевченко А. Розвязування задач різними способами // Поч. школа. - 2000. - №7. - С. 22-25.
63. Шмырёва Г.Г. Дифференцированные задания при работе над ошибками в решении задач // Нач. школа. - 1986. - №2. - С. 34-35.
64. Эрдниев П.М., Эрдниев Б.П. Теория и методика обучения математике в начальной школе. - М.: Педагогика, 1988. - 340 с.
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |