Шпаргалка по предмету "Базы данных"

Узнать цену работы по вашей теме


Переход от ненормализованных отношений к отношениям в 3нф может быть выполнен при помощи алгоритма нормализации.

Алгоритм нормализации заключается в последовательной декомпозиции отношений для устранения функциональных зависимостей атрибутов от части сложного ключа (приведение к 2НФ) и устранения функциональных зависимостей неключевых атрибутов друг от друга (приведение к 3НФ). Корректность процедуры нормализации (декомпозиция без потери информации) доказывается теоремой Хеза. Проекция R[X] отношения R на множество атрибутов X называется собственной, если множество атрибутов X является собственным подмножеством множества атрибутов отношения R(т. е. множество атрибутов X не совпадает с множеством всех атрибутов отношения R). Определение 7. Собственные проекции R1 и R2 отношения R называются декомпозицией без потерь, если отношение R точно восстанавливается из них при помощи естественного соединения для любого состояния отношения R: . Теорема (Хеза). Пусть R(A,B,C) является отношением, и A,B,C - атрибуты или множества атрибутов этого отношения. Если имеется функциональная зависимость, то проекции и образуют декомпози-цию без потерь. Доказательство. Необходимо доказать, что для любого состояния отношения R. В левой и правой части равенства стоят множества кортежей, поэтому для доказа-тельства достаточно доказать два включения для двух множеств кортежей: и . Докажем первое включение. Возьмем произвольный кортеж . Докажем, что он включается также и в . По определению проекции, кортежи и . По определению естественного соединения кортежи r1 и r2, имеющие одинаковое значение a общего атрибута A, будут соединены в процессе естественного соединения в кортеж . Таким образом, включение доказано. Докажем обратное включение. Возьмем произвольный кортеж . Докажем, что он включается также и в R. По определению естественного соединения получим, что в имеются кортежи и . Т. к., то существует некоторое значение c1, такое что кортеж . Аналогично, существует некоторое значение b1, такое что кортеж . Кортежи r1 и r2 имеют одинаковое значение атрибута A, равное a. Из этого, в силу функциональ-ной зависимости, следует, что b=b1. Таким образом, кортеж . Обратное включение доказано. Теорема доказана. Замечание. В доказательстве теоремы Хеза наличие функциональной зависимости не использовалось при доказательстве включения . Это означает, что при выполнении декомпозиции и последующем восстанов-лении отношения при помощи естественного соединения, кортежи исходного отношения не будут потеряны. Основной смысл теоремы Хеза заключается в доказательстве того, что при этом не появятся новые кортежи, отсутствовавшие в исходном отношении. Т. к. алгоритм нормализации (приведения отношений к 3НФ) основан на имеющихся в отношениях функциональных зависимостях, то теорема Хеза показывает, что алгоритм нормализации является корректным, т. е. в ходе нормализации не происходит потери информации.


Не сдавайте скачаную работу преподавателю!
С помощью нашего сервиса Вы можете собрать свою коллекцию шпаргалок по нужному предмету, и распечатать готовые ответы в удобном для вырезания виде. Для этого начните собирать ответы, добавляя в "Мои шпаргалки".

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Делаем шпаргалки правильно:
! Шпаргалки для экзаменов Какие бывают шпаргалки, как их лучше подготовить и что писать.
! Делаем правильную шпаргалку Что представляет собой удобная и практичная шпаргалка, как ее сделать.
! Как воспользоваться шпаргалкой В какой момент лучше достать шпаргалку, как ей воспользоваться и что необходимо учесть.

Читайте также:
Сдаем экзамены Что представляет собой экзамен, как он проходит.
Экзамен в виде тестирования Каким образом проходит тестирование, в чем заключается его суть.
Готовимся к экзаменам Как правильно настроиться, когда следует прекратить подготовку и чем заниматься в последние часы.
Боремся с волнением Как преодолеть волнение, как внушить себе уверенность.
Отвечаем на экзамене Как лучше отвечать и каким идти к преподавателю.
Не готов к экзамену Что делать если не успел как следует подготовиться.
Пересдача экзамена На какое время назначается пересдача, каким образом она проходит.
Микронаушники Что такое микронаушник или "Профессор .. ллопух ...".

Виды дипломных работ:
выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института.
магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения.