Реферат по предмету "Химия"

Узнать цену реферата по вашей теме


Платина 2

--PAGE_BREAK--Ôèçè÷åñêèå ñâîéñòâà.
Ïëàòèíà î÷åíü òóãîïëàâêèé è òðóäíîëåòó÷èé ìåòàëë, êðèñòàëëèçóåòñÿ â ãðàíåöåíòðèðîâàííûå êóáè÷åñêèå ðåøåòêè. Ïðè âîçäåéñòâèè íà ðàñòâîðû ñîëåé âîññòàíîâèòåëÿìè ìåòàëë ìîæåò áûòü ïîëó÷åí â âèäå “÷åðíè”, îáëàäàþùåé âûñîêîé äèñïåðñíîñòüþ.

Ïëàòèíà â ãîðÿ÷åì ñîñòîÿíèè õîðîøî ïðîêàòûâàåòñÿ è ñâàðèâàåòñÿ. Õàðàêòåðíûì ñâîéñòâîì ÿâëÿåòñÿ ñïîñîáíîñòü àáñîðáèðîâàòü íà ïîâåðõíîñòè íåêîòîðûå ãàçû, îñîáåííî âîäîðîä è êèñëîðîä. Ñêëîííîñòü ê àáñîðáöèè çíà÷èòåëüíî âîçðàñòàåò ó ìåòàëëà, íàõîäÿùåãîñÿ â òîíêîäèñïåðñíîì è êîëëîèäíîì ñîñòîÿíèè. Ïëàòèíà (îñîáåííî ïëàòèíîâàÿ ÷åðíü) äîâîëüíî ñèëüíî ïîãëоùàåò êèñëîðîä: 100 îáúåìîâ êèñëîðîäà íà îäèí îáúåì ïëàòèíîâîé ÷åðíè. Âñëåäñòâèè ñïîñîáíîñòè ê àáñîðáцèè ãàçîâ ïëàòèíó ïðèìåíÿþò â êà÷åñòâå êàòàëèçàòîðîâ ïðè ðåàêöèÿõ ãèäðîãåíèçàöèè è îêèñëåíèÿ. Êàòàëèòè÷åñêàÿ àêòèâíîñòü óâåëè÷èâàåòñÿ ïðè èñïîëüçîâàíèè ÷åðíè.

Таблица2.

   
Физические
свойства.

Õàðàêòåðèñòèêà

Pt

Ïëîòíîñòü ïðè 20 °Ñ, ã/äì3

21.45

Öâåò

Ñåðîâàòî-áåëûé, áëåñòÿùèé

Ðàäèóñ àòîìà, íì

0.138

Òåìïåðàòóðà ïëàâëåíèÿ, °Ñ

1774

Òåìïåðàòóðà êèïåíèÿ, °Ñ

4590

Ïàðàìåòðû êðèñòàëëè÷åñêîé ðåøåòêè ïðè 20 °Ñ, íì


à=0.392

Óäåëüíàÿ òåïëîåìêîñòü, Äæ/(ìîëü/Ê)

25.9

Òåïëîïðîâîäíîñòü ïðè 25 °Ñ, Âò/(ì·Ê)

74.1

Óäåëüíîå ýëåêòðîñîïðîòèâëåíèå ïðè 0 °Ñ, ìêÎì·ñì



9.85

Òâåðäîñòü ïî Áðèíåëëþ, ÌÏà

390-420

Ìîäóëü óïðóãîñòè, ÃÏà

173
    продолжение
--PAGE_BREAK--Õèìè÷åñêèå ñâîéñòâà.
Ïëàòèíà êàê ýëåìåíò VIII ãðóïïû ìîæåò ïðîÿâëÿòü íåñêîëüêî âàëåíòíîñòåé: 0, 2+, 3+, 4+, 5+, 6+ è 8+. Íî, êîãäà èäåò ðå÷ü îá ýëåìåíòå ¹ 78 ïî÷òè òàêæå, êàê âàëåíòíîñòü, âàæíà äðóãàÿ õàðàêòåðèñòèêà — êîîðäèíàöèîííîå ÷èñëî. Îíî îçíà÷àåò, ñêîëüêî àòîìîâ (èëè ãðóïï àòîìîâ), ëèãàíäîâ, ìîæåò ðàñïîëîæèòüñÿ âîêðóã öåíòðàëüíîãî àòîìà â ìîëåêóëå êîìïëåêñíîãî ñîåäèíåíèÿ. Äëÿ ñòåïåíè îêèñëåíèÿ 2+ è 4+ êîîðäèíàöèîííîå ÷èñëî ðàâíî ñîîòâåòñòâåííî ÷åòûðåì èëè øåñòè.

Êîìïëåêñû äâóõâàëåíòíîé ïëàòèíû èìåþò ïëîñêîñòíîå ñòðîåíèå, à ÷åòûðåõâàëåíòíîé — îêòàýäðè÷åñêîå.

Платина чрезвычайно устойчива против коррозии. Ïðè îáû÷íîé òåìïåðàòóðå онаíå âçàèìîäåéñòâóåò ñ ìèíåðàëüíûìè è îðãàíè÷åñêèìè êèñëîòàìè. Ñåðíàÿ êèñëîòà ïðè íàãðåâå ìåäëåííî ðàñòâîðÿåò ïëàòèíó. Ïîëíîñòüþ ïëàòèíà ðàñòâîðÿåòñÿ â öàðñêîé âîäêå:

3Pt+4HNO3+18HCl=3H2[PtCl6]+4NO+8H2O.                      

Ïðè ðàñòâîðåíèè ïîëó÷àåòñÿ ãåêñàõëîðîïëàòèíîâàÿ, èëè ïëàòèíîõëîðè­ñòîâîäîðîäíàÿ, êèñëîòà H2[PtCl6], êîòîðàÿ ïðè âûïàðèâàíèè ðàñòâîðà âûäåëÿåòñÿ â âèäå êðàñíî-áóðûõ êðèñòàëëîâ ñîñòàâà H2[PtCl6]•H2O. Ïðè ïîâûøåííûõ òåìïåðàòóðàõ ïëàòèíà âçàèìîäåéñòâóåò ñ åäêèìè ùåëî÷àìè, ôîñôîðîì è óãëåðîäîì.

Ñ êèñëîðîäîì ïëàòèíà îáðàçóåò îêñèäû (II), (III) è (IV): PtO, Pt203 è PtO2. Îêñèä PtO ïîëó÷àåòñÿ ïðè íàãðåâàíèè ïîðîøêà ïëàòèíû äî 430 °Ñ â àòìîñôåðå êèñëîðîäà ïðè äàâëåíèè 0.8 ÌÏà. Îêñèä Pt2O3 ìîæíî ïîëó÷èòü ïðè îêèñëåíèè ïîðîøêà ìåòàëëè÷åñêîé ïëàòèíû ðàñïëàâëåííûì ïåðîêñèäîì íàòðèÿ. Îêñèä PtO2 — ïîðîøîê ÷åðíîãî öâåòà — ïîëó÷àåòñÿ ïðè êèïÿ÷åíèè ãèäðîêñèäà ïëàòèíû (II) ñî ùåëî÷üþ:

2Pt(OH)2=PtO2+Pt+2H2O.                                                                

Ãèäðîêñèä ïëàòèíû (IV) ìîæíî ïîëó÷èòü îñòîðîæíûì ïðèëèâàíèåì ùåëî÷è ê ðàñòâîðó õëîðîïëàòèíàòà êàëèÿ:

K2[PtCl6]+4KOH=Pt(OH)4+6KCl.                                              

Ñåðíèñòîå ñîåäèíåíèå PtS — ïîðîøîê êîðè÷íåâîãî öâåòà, íå ðàñòâîðèìûé â êèñëîòàõ è öàðñêîé âîäêå; PtS2 — ÷åðíûé îñàäîê, ïîëó÷àåìûé èç ðàñòâîðîâ äåéñò­âèåì ñåðîâîäîðîäà, ðàñòâîðèìûé â öàðñêîé âîäêå.

Платина при нагревании хорошо соединяется с фтором и хлором.Ïðè 360 °Ñ âîçäåéñòâèåì õëîðà íà ïëàòèíó ìîæíî ïîëó÷èòü òåòðàõëîðèä PtCl4, êîòîðûé ïðè òåìïåðàòóðå âûøå 370 °Ñ ïåðåõîäèò â òðèõëîðèä PtCl3, à ïðè 435 °Ñ ðàñïàäàåòñÿ íà õëîð è ìåòàëëè÷åñêóþ ïëàòèíó; PtCl2ðàñòâîðÿåòñÿ â ñëàáîé ñîëÿíîé êèñëîòå ñ îáðàçîâàíèåì ïëàòèíèñòî-õëîðèñòîâîäîðîäíîé êèñëîòû H2[PtCl4], ïðè äåéñòâèè íà êîòîðóþ ñîëåé ìåòàëëîâ ïîëó÷àþòñÿ õëîðîïëàòèíèòû Me2[PtCl4] (ãäå Me— K, Na, NH4è ò.ä.).

Òåòðàõëîðèä ïëàòèíû PtCl4 ïðè âîçäåéñòâèè ñîëÿíîé êèñëîòû îáðàçóåò ïëàòèíîõëîðèñòîâîäîðîäíóþ êèñëîòó H2[PtCl6]. Ñîëè åå — õëîðîïëàòèíàòû Me2[PtCl6]. Ïðàêòè÷åñêèé èíòåðåñ ïðåäñòàâëÿåò õëîðîïëàòèíàò àììîíèÿ (NH4)2[PtCl]6 — êðèñòàëëû æåëòîãî öâåòà, ìàëîðàñòâîðèìûå â âîäå, ñïèðòå è êîíöåíòðèðîâàííûõ ðàñòâîðàõ õëîðèñòîãî àììîíèÿ. Ïîýòîìó ïðè àôôèíàæå ïëàòèíó îòäåëÿþò îò äðóãèõ ïëàòèíîâûõ ìåòàëëîâ, îñàæäàÿ â âèäå (NH4)2[PtCl6].

 âîäíûõ ðàñòâîðàõ ñóëüôàòû ëåãêî ãèäðîëèçóþòñÿ, ïðîäóêòû ãèäðîëèçà â çíà÷èòåëüíîì èíòåðâàëå pH íàõîäÿòñÿ â êîëëîèäíîì ñîñòîÿíèè.  ïðèñóòñòâèè õëîðèä-èîíîâ ñóëüôàòû ïëàòèíû ïåðåõîäÿò â õëîðîïëàòèíàòû.

Поведение

платины

в

обогатительных

операциях
.

Ôîðìû íàõîæäåíèÿ ïëàòèíû â ðóäàõ.

Ôîðìû íàõîæäåíèÿ ïëàòèíû â ðóäàõ îïðåäåëÿþò åå ïîâåäåíèå â ïîñëå­äóþùèõ ïðîöåññàõ îáîãàùåíèÿ. Ïîýòîìó èõ èçó÷åíèå èìååò áîëüøîå çíà÷åíèå äëÿ âûáîðà òåõíîëîãè÷åñêîé ñõåìû ïåðåðàáîòêè ïëàòèíóñîäåðæàùèõ ðóä è êîíöåíòðàòîâ.

Кларк и Вашингтон, а позднее И. И В. Ноддак подсчитали содержание пла­тины в земной коре.Ïåðâûå ïðèíèìàëè â ðàñ÷åò òîëüêî òó ïëàòèíó, êîòîðàÿ íàõîäèòñÿ â ðîññûïÿõ è êîðåííûõ óëüòðàîñíîâíûõ ïîðîäàõ, à âòîðûå ó÷èòûâàëè òàêæå ïëàòèíó, íàõîäÿùóþñÿ â ðàññåÿííîì ñîñòîÿíèè. Èíîãäà ïîëüçóþòñÿ äàííûìè ïî ðàñïðîñòðàíåííîñòè ïëàòèíû, ïðèâîäèìûìè Ãîëüäøìèäòîì. Îáîáùåíèå ðÿäà èññëåäîâàíèé íà îñíîâå ìíîãî÷èñëåííûõ îïðåäåëåíèé äàíî À. Ï. Âèíîãðàäîâûì.

Таблица 3.

Содержание платины в земной коре, %.

Ïî Êëàðêó è

Âàøèíãòîíó

Ïî È. è Â. Íîääàê

Ïî

Ãîëüäøìèäòó

Ïî À. Ï.

Âèíîãðàäîâó

1.2·10-8

5·10-6

1·10-8

5·10-7

Ïëàòèíó äîáûâàþò â “ïåðâè÷íûõ” è “âòîðè÷íûõ” ìåñòîðîæäåíèÿõ. Ê ïåðâûì îòíîñÿòñÿ îòêðûòûå â 1908 ãоду êàíàäñêèå ìåäíîíèêåëåâûå ìàãíèòíûå êîë÷åäàíû â îêðóãå Ñàäáåðè, þæíîàôðèêàíñêèå ìåäíîíèêåëåâûå êîë÷åäàíû â Òðàíñâààëåиìåñòîðîæäåíèÿ Íîðèëüñêà; çäåñü ïëàòèíà ïðèñóòñòâóåò â âèäå ñóëüôèäîâ. Âòîðè÷íûå ìåñòîðîæäåíèÿ îáÿçàíû ñâîèì ïîÿâëåíèåì âûâåòðèâàíèþ ïåðâè÷íûõ ìåñòîðîæäåíèé è ïîñëåäóþùåìó ñìûâàíèþ âûâåòðåííûõ ïîðîä, ïðè÷åì ïëàòèíîâûå ìåòàëëû, èìåþùèå áîëüøóþ ïëîòíîñòü, îñåäàëè â îïðåäåëåííûõ ìåñòàõ. Âòîðè÷íûå ìåñòîðîæäåíèÿ íàõîäÿòñÿ â Êîëóìáèè. Íî îíè óòðàòèëè ñâîå çíà÷åíèå â 20-õ ãîäàõ ïðîøëîãî âåêà, êîãäà íà çàïàäíûõ è âîñòî÷íûõ ñêëîíàõ Óðàëüñêîãî õðåáòà áûëè íàéäåíû áîëüøèå çàëåæè ïëàòèíîâûõ ðóä.  óðàëüñêèõ ìåñòîðîæäåíèÿõ ìèíåðàëû ïëàòèíîâûõ ìåòàëëîâ ãåíåòè÷åñêè ñâÿçàíû ñ ãëóáèííûìè óëüòðàîñíîâíûìè ïîðîäàìè, ãëàâíûì îáðàçîì, ñ äóíèòàìè.

Таблица 4.

Средний состав уральской россыпной и коренной платины, %

Òèï ìåñòîðîæäåíèÿ

Pt

Ðîññûïíàÿ

77.5

Êîðåííàÿ

76.7

Ñðåäíèé ñîñòàâ àôôèíèðóåìîé ïëàòèíû

78.4

 êàíàäñêèõ ìåñòîðîæäåíèÿõ ïëàòèíà âñòðå÷àåòñÿ â âèäå ñïåðèëèòà PtAs2, êóïåðèòà PtS è íåêîòîðûõ áîëåå ðåäêèõ ìèíåðàëîâ. Îäíàêî áîëüøàÿ ÷àñòü ïëàòèíîâûõ ìåòàëëîâ íàõîäèòñÿ â ñóëüôèäàõ â âèäå òâåðäîãî ðàñòâîðà. Ñîäåðæàíèå ïëàòèíû â ðóäàõ äîñòèãàåò 1.5-2.0 ãраммаíà 1 òоннуðóäû.

Ïðèìåðíî òàêîé æå ìèíåðàëîãè÷åñêèé ñîñòàâ èìåþò þæíîàôðèêàíñêèå ðóäû, êðîìå òîãî çäåñü íàéäåíà ñàìîðîäíàÿ ïëàòèíà è ôåððîïëàòèíà.

Êàæäîìó òèïó ðóä è èõ ìèíåðàëüíûì ðàçíîâèäíîñòÿì ñâîéñòâåííû ñâîè îñîáåííîñòè ïëàòèíîâîé ìèíåðàëèçàöèè, îáóñëîâëåííûå ðàçëè÷íîé îáîãàùåííîñòüþ ïëàòèíîâûìè ìåòàëëàìè, ðàçëè÷íûì ñîîòíîøåíèåì ïëàòèíû, ïàëëàäèÿ, èðèäèÿ, ðîäèÿ, ðóòåíèÿ è îñìèÿ, à òàêæå ðàçëè÷èåì ôîðì íàõîæäåíèÿ ìåòàëëîâ.

Ìíîãîîáðàçèå òèïîâ ðóä è ðàçëè÷èå ôîðì íàõîæäåíèÿ ïëàòèíîâûõ ìåòàëëîâ â ìåäíî-íèêåëåâûõ ðóäàõ âûçûâàåò áîëüøèå ñëîæíîñòè ñ ïîëíîòîé èçâëå÷åíèÿ ïëàòèíîâûõ ìåòàëëîâ â ãîòîâûå êîíöåíòðàòû, íàïðàâëÿåìûå â ìåòàëëóðãè÷åñêóþ ïåðåðàáîòêó.
    продолжение
--PAGE_BREAK--Ïîëó÷åíèå ïëàòèíîâûõ ìåòàëëîâ èç ðîññûïåé.
Ðîññûïè ïëàòèíîâûõ ìåòàëëîâ, îáðàçîâàííûå â ðåçóëüòàòå ðàçðóøåíèÿ êîðåííûõ ïîðîä, èçâåñòíû âî ìíîãèõ ñòðàíàõ, íî ïðîìûøëåííûå çàïàñû â îñíîâíîì ñîñðåäîòî÷åíû â Êîëóìáèè, Áðàçèëèè и Þæíîé Àôðèêå.

Ïðîöåññ èçâëå÷åíèÿ ïëàòèíîâûõ ìåòàëëîâ èç ðîññûïåé ñâîäèòñÿ ê äâóì ãðóïïàì îïåðàöèé: äîáû÷å ïåñêîâ è èõ îáîãàùåíèþ ãðàâèòàöèîííûìè ìåòîäàìè. Ïåñêè ìîæíî äîáûâàòü ïîäçåìíûìè è îòêðûòûìè ñïîñîáàìè; êàê ïðàâèëî, ïðè­ìåíÿþò îòêðûòûå ãîðíûå ðàáîòû, âûïîëíÿåìûå â äâà ýòàïà: âñêðûøà ïóñòîé ïîðîäû è äîáû÷à ïëàòèíóñîäåðæàùèõ ïåñêîâ. Äîáû÷ó ïåñêîâ îáû÷íî ñîâìåùàþò ñ èõ ãðàâèòàöèîííûì îáîãàùåíèåì â îäíîì àãðåãàòå, íàïðèìåð, äðàãå.

Äîáûòàÿ ãîðíàÿ ìàññà èç äðàæíûõ ÷åðïàêîâ ïîñòóïàåò â ïðîìûâî÷íóþ áî÷êó, ãäå îñóùåñòâëÿåòñÿ äåçèíòåãðàöèÿ è ãðîõî÷åíèå. Ïðîöåññ äåçèíòåãðàöèè ãîðíîé ìàññû â áî÷êå ïðîèñõîäèò ïîñðåäñòâîì ìåõàíè÷åñêîãî ðàçäåëåíèÿ è ðàçìûâà åå âîäîé ïðè ïåðåêàòûâàíèè ïîðîäû âíóòðè áî÷êè è îðîøåíèè íàïîðíîé ñòðóåé âîäû. Ïîðîäà ïðè ýòîì ðàçäåëÿåòñÿ íà äâà ïðîäóêòà: âåðõíèé (ãàëüêà, êðóïíûå êàìíè, íåðàçìûòûå êàìíè ãëèíû) íå ñîäåðæèò ïëàòèíû è íàïðàâëÿåòñÿ â îòâàë; íèæíèé ïîñòóïàåò ïîñëåäîâàòåëüíî íà øëþçû, îòñàäî÷íûå ìàøèíû è êîíöåíòðàöèîííûå ñòîëû.  ðåçóëüòàòå îáîãàùåíèÿ ïîëó÷àåòñÿ øëèõîâàÿ ïëàòèíà, ñîäåðæàùàÿ äî 70-90 % ïëàòèíîâûõ ìåòàëëîâ. Åå íàïðàâëÿþò íà àôôèíàæ.

Èçâëå÷åíèå ïëàòèíû ïðè îáîãàùåíèè ñóëüôèäíûõ ïëàòèíóñîäåðæàùèõ ðóä.

Òåõíîëîãè÷åñêèå ñõåìû èçâëå÷åíèÿ ïëàòèíîâûõ ìåòàëëîâ ïðè îáîãàùåíèè âêðàïëåííûõ ðóä îïðåäåëÿþòñÿ ôîðìàìè íàõîæäåíèÿ ýòèõ ìåòàëëîâ â äàííîì ìåñòîðîæäåíèè. Åñëè ïëàòèíîâûå ìåòàëëû ïðåäñòàâëåíû ñàìîðîäíîé ïëàòèíîé è ôåððîïëàòèíîé, òî â òåõíîëîãè÷åñêóþ ñõåìó îáîãàùåíèÿ âõîäèò îïåðàöèÿ ïî ïîëó÷åíèþ ãðàâèòàöèîííîãî êîíöåíòðàòà, ñîäåðæàùåãî ïîâûøåííûå êîíöåíòðàöèè ïëàòèíîâûõ ìåòàëëîâ. Åñëè â ðóäàõ ïëàòèíîâûå ìåòàëëû, â ÷àñòíîñòè ïëàòèíà, íàõîäÿòñÿ â âèäå ìàãíèòíîé ôåððîïëàòèíû, òî îáû÷íî ïðè­ìåíÿþò ìàãíèòíóþ ñåïàðàöèþ ñ ïîñëåäóþùåé ïåðåðàáîòêîé áîãàòîãî ïðîäóêòà ëèáî â îòäåëüíîì öèêëå, ëèáî ñîâìåñòíî ñ íèêåëåâûì êîíöåíòðàòîì â ïèðîìåòàëëóðãè÷åñêîì ïðîöåññå. Ïåðâóþ ñõåìó ïðèìåíÿþò, íàïðèìåð, äëÿ îáîãàùåíèÿ ïëàòèíóñîäåðæàùèõ ðóä Þæíîé Àôðèêè.

Òåõíîëîãè÷åñêèé ïðîöåññ ãðàâèòàöèîííî-ôëîòàöèîííîãî îáîãàùåíèÿ þæíîàôðèêàíñêèõ ðóä âêëþ÷àåò äðîáëåíèå èñõîäíîé ðóäû ñ ïîñëåäóþùèì òîíêèì èçìåëü÷åíèåì åå â äâå ñòàäèè â øàðîâûõ ìåëüíèöàõ, ðàáîòàþùèõ â çàìêíóòîì öèêëå ñ ãèäðîöèêëîíàìè.

Ñâîáîäíûå çåðíà ñàìîðîäíîé ïëàòèíû îòäåëÿþò â öèêëå èçìåëü÷åíèÿ íà øëþçàõ ñ êîðäåðîåâûì ïîêðûòèåì. Ïîëó÷åííûå êîíöåíòðàòû ïîäâåðãàþò ïåðå÷èñòêå íà êîíöåíòðàöèîííûõ ñòîëàõ ñ ïîëó÷åíèåì ãðàâèòàöèîííîãî êîíöåíòðàòà, ñîäåðæàùåãî 30-35 % Pt, 4-6 % Pd è 0.5 % äðóãèõ ìåòàëëîâ ïëàòèíîâîé ãðóïïû.

Ïóëüïó ïîñëå âûäåëåíèÿ ãðàâèòàöèîííîãî êîíöåíòðàòà ñãóùàþò è íàïðàâëÿþò íà ôëîòàöèþ. Êîíå÷íûì ïðîäóêòîì ôëîòàöèè ÿâëÿåòñÿ êîíöåíòðàò, ñîäåðæàùèé: 3.5-4.0% Ni, 2.0-2.3% Cu, 15.0% Fe, 8.5-10.0% S; ñóììà ïëàòèíîâûõ ìåòàëëîâ 110-150 ã/ò. Ýòîò êîíöåíòðàò ïîñòóïàåò â ìåòàëëóðãè÷åñêóþ ïåðåðàáîòêó. Èçâëå÷åíèå ïëàòèíîâûõ ìåòàëëîâ â  öèêëå îáîãàùåíèÿ äîñòèãàåò 82-85 %.

Áåäíàÿ âêðàïëåííàÿ ðóäà ìåñòîðîæäåíèÿ Ñàäáåðè ïîäâåðãàåòñÿ äðîáëåíèþ, èçìåëü÷åíèþ ñ ïîñëåäóþùåé ôëîòàöèåé è ìàãíèòíîé ñåïàðàöèåé.  ðåçóëüòàòå ïîëó÷àåòñÿ íèêåëåâûé êîíöåíòðàò, ñîäåðæàùèé ïëàòèíîâûå ìåòàëëû, ìåäíûé êîíöåíòðàò, â ñîñòàâ êîòîðîãî âõîäÿò çîëîòî è ñåðåáðî, è ïèððîòèíîâûé êîíöåíòðàò, ïðàêòè÷åñêè íå èìåþùèé áëàãîðîäíûõ ìåòàëëîâ.

Ïðè îáîãàùåíèè âêðàïëåííûõ ðóä îòå÷åñòâåííûõ ìåñòîðîæäåíèé ïîëó÷àþòñÿ äâà êîíöåíòðàòà: ìåäíûé è íèêåëåâûé. Çíà÷èòåëüíûå ïîòåðè ìåòàëëîâ-ñïóòíèêîâ ñ õâîñòàìè îáîãàùåíèÿ îáúÿñíÿþòñÿ òåì, ÷òî îíè àñ­ñîöèèðîâàíû ñ ïèððîòèíîì, óõîäÿùèì â îòâàë.

Поведение платины при металлургической переработке сульфидных платинусодержащих руд и концентратов.

Îñíîâíûå òåõíîëîãè÷åñêèå îïåðàöèè ïåðåðàáîòêè ìåäíî-íèêåëåâûõ êîíöåíòðàòîâ.

Ïðè îáîãàùåíèè ñóëüôèäíûõ ìåäíî-íèêåëåâûõ ðóä ïîëó÷àþòñÿ ìåäíûé è íèêåëåâûé êîíöåíòðàòû, ïåðåðàáàòûâàåìûå ïî ñëîæíîé òåõíîëîãè÷åñêîé ñõåìå (см. Приложение №1, рис.1.)

Íèêåëåâûé êîíöåíòðàò ïîñëå àãëîìåðàöèè èëè îêàòûâàíèÿ ïëàâÿò â ýëåêòðîòåðìè÷åñêèõ (ðåæå îòðàæàòåëüíûõ) ïå÷àõ, в результате чего получают øòåéí è øëàê. Øëàê íà íåêîòîðûõ çàâîäàõ ïîñëå ãðàíóëÿöèè è èçìåëü÷åíèÿ ïîäâåðãàþò ôëîòàöèè äëÿ èçâëå÷åíèÿ âçâåøåííûõ ÷àñòèö øòåéíà, ñîäåðæàùèõ ïëàòèíîâûå ìåòàëëû. Øòåéí, êîíöåíòðèðóþùèé îñíîâíóþ ìàññó ïëàòèíîâûõ ìåòàëëîâ, ïðîõîäèò îïåðàöèþ êîíâåðòèðîâàíèÿ íàîáåäíèòåëüíóþ ýëåêòðîïëàâêó, è ôàéíøòåéíà, êîòîðûé ìåäëåííî îõëàæäàåòñÿ, äðîáèòñÿ, èçìåëü÷àåòñÿ è ôëîòèðóåòñÿ ñ ïîëó÷åíèåì ìåäíîãî êîíöåíòðàòà, ïåðåðàáàòûâàåìîãî â ìåäíîì ïðîèçâîäñòâå, è íèêåëåâîãî, íàïðàâëÿåìîãî íà îáæèã â ïå÷àõ êèïÿùåãî ñëîÿ.

Ïðè îõëàæäåíèè ôàéíøòåéíà êîìïîíåíòû ïðåòåðïåâàþò êðèñòàëëèçàöèþ â ñëåäóþùåé ïîñëåäîâàòåëüíîñòè: ïåðâè÷íûå êðèñòàëëû ñóëüôèäà ìåäè àäâîéíàÿ ýâòåêòèêà, ñîñòîÿùàÿ èç ñóëüôèäîâ ìåäè è íèêåëÿ, àòðîéíàÿ ýâòåêòèêà, ñîñòî­ÿùàÿ èç ñóëüôèäîâ ìåäè, íèêåëÿ è ìåäíî-íèêåëåâîãî ìåòàëëè÷åñêîãî ñïëàâà. Ìåòàëëè÷åñêèé ñïëàâ, âûõîä êîòîðîãî íà ðàçëè÷íûõ çàâîäàõ ñîñòàâëÿåò 8-15 %, êîëëåêòèðóåò äî 95 % ïëàòèíîâûõ ìåòàëëîâ, ñîäåðæàùèõñÿ â ôàéíøòåéíå. Ïî­ýòîìó íà íåêîòîðûõ çàâîäàõ ìåòàëëè÷åñêóþ ôàçó âûäåëÿþò ìàãíèòíîé ñåïàðàöèåé è íàïðàâëÿþò íà âîññòàíîâèòåëüíóþ ïëàâêó ñ ïîëó÷åíèåì àíîäîâ.

Ïîëó÷åííóþ ïîñëå îáæèãà íèêåëåâîãî êîíöåíòðàòà çàêèñü ïîäâåðãàþò âîñ­ñòàíîâèòåëüíîé ïëàâêå íà àíîäû â äóãîâûõ ýëåêòðîïå÷àõ. Àíîäû ïîäâåðãàþò ýëåêòðîðàôèíèðîâàíèþ; âûïàäàþùèé íà àíîäå øëàì êîíöåíòðèðóåò îñíîâíóþ ìàññó ïëàòèíîâûõ ìåòàëëîâ.

Ïëàòèíîâûå ìåòàëëû, íàõîäÿùèåñÿ â ìåäíîì êîíöåíòðàòå, ïîñëå îáæèãà, îòðàæàòåëüíîé ïëàâêè, êîíâåðòèðîâàíèÿ è îãíåâîãî ðàôèíèðîâàíèÿ êîíöåíòðèðóþòñÿ â ìåäíûõ àíîäàõ, ïîñëå ýëåêòðîðàôèíèðîâàíèÿ ïåðåõîäÿò â ìåäíûé øëàì. Ìåäíûé è íèêåëåâûé øëàìû îáîãàùàþò ñ ïîëó÷åíèåì êîíöåíòðàòîâ, ñîäåðæàùèõ äî 60 % ïëàòèíîâûõ ìåòàëëîâ. Ýòè êîíöåíòðàòû íàïðàâëÿþò íà àôôèíàæ.

 ïîñëåäíèå ãîäû äëÿ ïåðåðàáîòêè ìåäíûõ è íèêåëåâûõ êîíöåíòðàòîâ ïðåäëîæåíû âûñîêîèíòåíñèâíûå àâòîãåííûå ïðîöåññû: ïëàâêà â æèäêîé âàííå, âçâåøåííàÿ ïëàâêà, êèñëîðîäíî-âçâåøåííàÿ ïëàâêà è äð. Ïðèìåíÿþò òàêæå ãèäðîìåòàëëóðãè÷åñêóþ ïåðåðàáîòêó ïëàòèíóñîäåðæàùèõ ñóëüôèäíûõ êîíöåíòðàòîâ ñ èñïîëüçîâàíèåì îêèñëèòåëüíîãî àâòîêëàâíîãî âûùåëà÷èâàíèÿ, ñîëÿíî- è ñåðíîêèñëîå âûùåëà÷èâàíèå, õëîðèðîâàíèå ïðè êîíòðîëèðóåìîì ïîòåíöèàëå è äðóãèå ïðîöåññû.

Òàêèì îáðàçîì, ïëàòèíîâûå ìåòàëëû â ïðîöåññå ïèðî- è ãèäðîìåòàëëóðãè÷åñêîé ïåðåðàáîòêè ïîäâåðãàþò âîçäåéñòâèþ îêèñëèòåëåé ïðè òåìïåðàòóðàõ äî 1200-1300 °Ñ, äåéñòâèþ êèñëîò ïðè âûñîêèõ îêèñëèòåëüíûõ ïîòåíöèàëàõ ñðåäû, àíîäíîìó ðàñòâîðåíèþ ïðè çíà÷èòåëüíûõ ýëåêòðîïîëîæèòåëüíûõ ïîòåíöèàëàõ. Ïîýòîìó íåîáõîäèìî ðàññìîòðåòü ïîâåäåíèå ýòèõ ìåòàëëîâ â ðàçëè÷íûõ ïðîöåññàõ ñ öåëüþ ñîçäàíèÿ óñëîâèé äëÿ ïîâûøåíèÿ èçâëå÷åíèÿ èõ â ïðèíÿòûõ è ïðîåêòèðóåìûõ òåõíîëîãè÷åñêèõ ñõåìàõ ïåðåðàáîòêè ïëàòèíóñîäåðæàùèõ ñóëüôèäíûõ ìåäíî-íèêåëåâûõ êîíöåíòðàòîâ.

Ôèçèêî-õèìè÷åñêèå îñíîâû ïîâåäåíèÿ ïëàòèíû ïðè ïåðåðàáîòêå ñóëüôèäíîãî ñûðüÿ.

Пирометаллургические процессы.

При переработке сульфидных руд пирометаллургическими способами благо­родные металлы частично теряются с отвальными шлаками, пылями и газами. Для теоретической оценки возможности таких потерь и создания условий для их уменьшения большой интерес представляет зависимость свободных энергий об­разования оксидов и сульфидов благородных металлов от температур.

Таблица 5.

Свободные энергии окисления сульфидов.



Реакция

Уравнение свободной энергии

DGТ, Дж/моль

DGТ, Дж/моль О2 при температуре, К

1173       1273      1573

PtS(тв)+2O2(г)=PtO2(тв)+SO2(г)

-228000+87.5·Т

 -          -227        -214

PtS(тв)+2O2(г)=PtO2(г)+SO2(г)

-17600-7.5·Т

-26         -27          -29



Агломерация
. В процессе агломерации концентрат подвергается окускованию и частичной десульфурации при 1000-1100 °С, что сопровождается процессами разложения высших сульфидов и окисления получившихся продуктов кислоро­дом воздуха.

Электроплавка
сульфидного никель-медного концентрата осуществляется в электропечи, куда поступает концентрат, содержащий в зависимости от месторо­ждения от 20 до 150 г/т платиновых металлов. В шихту вместе с окатышами и аг­ломератом добавляют оборотные продукты и, в зависимости от состава исход­ного сырья, известняк или песчаник. Температура расплава на границе с электродом достигает 1300-1400 °С. Пустая порода ошлаковывается; шлак сли­вают, гранулируют. На некоторых предприятиях его подвергают измельчению и флотации с целью более полного извлечения благородных металлов. Содержание благородных металлов в шлаке в зависимости от режима плавки и состава кон­центрата колеблется от 0.3 до 1.0 г/т. Штейн концентрирует основную массу пла­тиновых металлов. Содержание их в штейне колеблется в пределах 100-600 г/т.

Процесс плавки протекает в основном в восстановительном режиме, поэтому потери платиновых металлов в этом процессе определяются механическими потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери могут быть устранены флотацией шлаков с извлечением платиновых металлов в сульфидный концентрат. При этом извлечение платины может достигать более 99.0 %.

Конвертирование
.Полученный при электроплавке штейн подвергается конвертированию. Конвертирование, цель которого состоит в возможно более полном удалении сульфида железа из никель-медных штейнов, осуществляется при температуре около 1200 °С. Процесс протекает в сульфидных расплавах, где активность платиновых металлов очень невелика. Поэтому в процессе конверти­рования в шлаковую фазу в очень незначительных количествах переходит платина (

При обжиге никелевого концентрата в печах кипящего слоя процесс окисле­ния протекает весьма интенсивно и поэтому сопровождается значительными потерями металлов.

Восстановительная электроплавказакиси никеля на металлический никель не вызывает значительных потерь платиновых металлов. Механические потери их с пылями могут быть уменьшены в результате совершенствования системы пыле­улавливания. Переход в шлаки не вызывает дополнительных потерь, так как шлаки в этом процессе являются оборотными продуктами.

Взвешенная плавка сульфидных материалов осуществляется в окислительной атмосфере при температуре около 1300 °С.

Пирометаллургическая переработка медных концентратов, содержащих платиновые металлы, включая обжиг при 800-900 °С, отражательную плавку, конвертирование и огневое рафинирование меди. В последние годы для перера­ботки медных концентратов широкое применение получили автогенные про­цессы: взвешенная плавка и плавка в жидкой ванне.

Химические реакции и температурный режим обжига медных концентратов примерно те же, что при агломерации.

Гидрометаллургические процессы.

Платиновые металлы, содержащиеся в сульфидных медно-никелевых рудах, проходят через пирометаллургические операции, концентрируются в черновом металле и поступают на электролитическое рафинирование никелевых и медных анодов. Причем в зависимости от условий проведения этих операций большее или меньшее количество платиновых металлов может переходить в сборные или оборотные продукты, что в конце концов приводит к безвозвратным потерям.

Таблица 6.

Формы нахождения платины в сульфатных, сульфатно-хлоридных и хлорид­ных растворах.



Растворы



Сульфатный

сульфатно-хлоридный

хлоридный

[Pt2(SO4)4·(H20)2]2-



[PtCl4]2-  при jа

[PtCl6]2- при jа>1.4 В.

[PtCl4]2-  при jа

[PtCl6]2- при jа>1.4 В.



При содержании в сплавах 0.01-1.0 % платинового металла, он замещает в кристаллической решетке сплава атомы никеля или меди, не образуя самостоя­тельных структур.

Известно, что в присутствии сульфидной, оксидной и металлической фаз пла­тиновые металлы концентрируются в металлической фазе. Поэтому в никелевых и медных промышленных анодах, содержащих в качестве примесей сульфидные и оксидные фазы, платиновые металлы равномерно распределены в металличе­ской фазе, образуя кристаллическую решетку замещения. Это приводит к образо­ванию в решетке сплава микроучастков (зон) с более положительным равновес­ным потенциалом. Металлы в этих зонах не растворяются при потенциале работающего анода и выпадают в нерастворимый осадок — шлам. В случае повы­шения потенциала анода до величины, соответствующей потенциалу ионизации платиновых металлов, начинается переход этих металлов в раствор. Степень перехода будет увеличиваться, если в растворе платиновые металлы образуют стойкие комплексные соединения.

Таким образом поведение платиновых металлов при электрохимическом рас­творении анодов будет определяться потенциалом анода, составом раствора и природой растворяемого сплава.
    продолжение
--PAGE_BREAK--Переработка платинусодержащих шламов.
При электролитическом рафинировании меди и никеля платиновые металлы концентрируются в анодных шламах, где их содержание в зависимости от состава исходных руд колеблется в широких пределах, от десятых долей до нескольких процентов.

В соответствии с основными теоретическими положениями в шламы при растворении анодов практически без изменения переходят оксиды и сульфиды цветных металлов. Поэтому основными фазовыми составляющими никелевого шлама являются сульфиды меди и никеля (a-Cu2S, b-Cu2S, Ni3S2, NiS), оксиды (NiO, CuO, Fe2O3, Fe3O4), ферриты (NiFe2O4, CuFeO2). Платиновые металлы в шламах представлены рентгеноаморфными металлическими формами.

Непосредственная переработка бедных по содержанию благородных метал­лов продуктов, в состав которых входят значительные количества цветных металлов, железа и серы, на аффинажных предприятиях не производится. Поэтому анодные шламы предварительно обогащают различными пиро- и гидро­металлургическими методами с получением концентратов платиновых металлов. Технологические схемы обогащения шламов, применяемые на различных заводах, различаются между собой.

Существующие схемы построены на селективном растворении цветных ме­таллов, содержащихся в шламах. Благородные металлы при этом остаются в нерастворенном осадке, который направляют на аффинажное производство. Раствор, содержащий сульфаты цветных металлов, идет в основное производство. Во многих случаях для улучшения растворения цветных металлов шламы прохо­дят предварительную пирометаллургическую подготовку (обжиг, спекание, восстановительную плавку и т.д.).

Переработка шламов методом сульфатизации.

 Метод основан на том, что сульфиды, оксиды и другие соединения цветных металлов при взаимодействии с концентрированной серной кислотой при темпе­ратуре выше 150°С образуют сульфаты, которые при последующем выщелачива­нии переходят в раствор:

MeS+4H2SO4=MeSO4+4H2O+4SO2;

MeO+H2SO4=MeSO4+H2O;

Me+2H2SO4=MeSO4+2H2O+SO2;

Me2S+6H2SO4=2MeSO4+6H2O+5SO2.
Благородные металлы должны концентрироваться в нерастворимом остатке. Технологическая схема сульфатизации шлама приведена ниже:

      Влажный шлам

                    H2SO4

      Репульпация


 

      Сульфатизация

 

      Выщелачивание

 

    Фильтрация

                                 

                             Раствор                  Концентрат

                         в электролиз                       

                              никеля                   Щелочная

                                                  разварка





       

   Фильтрация
                   Концентрат                   Раствор

                   платиновых                   на сброс

                   металлов
Согласно схеме, шлам репульпируется в серной кислоте при 60-90 °С в тече­ние 4-6 ч. При этом в раствор переходит до 30 % никеля и меди. Благородные металлы полностью остаются в твердом остатке, который подвергают сульфати­зации в течение 10-12 ч при температуре 250-300 °С. Сульфаты цветных металлов и железа выщелачиваются водой, а твердый остаток для удаления кремнекислоты обрабатывают в течение 4 ч 4 М раствором щелочи при 80-90 °С. Твердый остаток, содержащий до 30 % палладия и платины, направляют на аффинаж. Щелочный раствор после нейтрализации сбрасывают.

Эта схема имеет существенный недостаток — при температуре сульфатизации выше 200 °С иридий, родий и рутений более, чем на 95 % переходят в раствор.

Поэтому предложен способ двойной сульфатизации (см. Приложение №1, рис.2). Медный и никелевый шламы в принятых пропорциях поступают на первую стадию сульфатизации, проводимую при 180-190 °С. Никель, медь, же­лезо более, чем на 99 % переходят в раствор. Платиновые металлы практически полностью остаются в нерастворимом остатке. Концентрация платины в растворе не превышает 0.01 мг/л.

Нерастворимый остаток более, чем в 8 раз обогащается платиновыми метал­лами, тем не менее, содержание благородных металлов в нем недостаточно для проведения аффинажных операций. Поэтому его подвергают второй сульфатиза­ции при 270-300 °С, Т: Ж=1:5, при механическом перемешивании в течении 10-12 ч. Просульфатизированный материал выщелачивается водой при 80-90 °С. При этом достигается дополнительное обогащение нерастворимого остатка платино­выми металлами примерно в 2-3 раза.

Остаток после второй сульфатизации и выщелачивания подвергают обес­кремниванию разваркой в 5 М растворе щелочи при 100 °С. Потери благородных металлов со щелочным раствором не превышают 0.2 %. Этот раствор после нейтрализации сбрасывают. Полученный концентрат содержит 40-45 % плати­ноидов и идет на аффинаж.

Схема двойной сульфатизации обеспечивает достаточно высокое извлечение всех платиновых металлов в продукты, пригодные для аффинажных операций. Недостатками ее являются невысокая производительность сульфатизационного оборудования.

Переработка шламов сульфатизирующим обжигом и электролитическим растворением вторичных анодов.

На некоторых предприятиях обогащение шламов осуществляется с использо­ванием пирометаллургических операций. Одна из схем этого процесса приведена на рис. 3., Приложение №1.

Шлам никелевого электролиза смешивают со шламом медного электролиза, из которого предварительно удален селен, и эту смесь подвергают окислительно-сульфатизирующему обжигу в печи с механическим перемешиванием. Обжиг протекает в течении 10-14 ч при 550-600 °С. При этом сульфиды меди, никеля и железа переходят в сульфаты. Платина находится в огарке в виде свободных металлов.

Огарок после обжига выщелачивают 0.5-1.0 М H2SO4 при 80-90 °С и механи­ческом перемешивании. Сульфаты никеля, меди, железа переходят в раствор. Остаток обогащается в 2.5-3.5 раза. Платина в растворах после выщелачивания практически отсутствует.

Выщелочный огарок после сушки направляют на восстановительную плавку и отливку анодов. Плавку ведут в электропечи при 1700 °С. Полученные шлаки перерабатывают в обеднительных электропечах, а обедненные шлаки передают в медное или никелевое производство. Аноды, обогащенные платиновыми метал­лами, подвергают электролитическому растворению в сернокислом электролите. Продуктами электролиза являются: анодный шлам, катодная медная губка и никелевый раствор.

Для отделения вторичных шламов от медной губки аноды помещают в диа­фрагмы из фильтрованной ткани. Анодный шлам представляет собой богатый платиновый концентрат. Катодную медную губку растворяют в серной кислоте, в результате чего медь переходит в раствор, а остаток является другим концентра­том платиновых металлов.

Таким образом, технологическая схема обогащения шламов с использова­нием окислительно-сульфатизирующего обжига и электролитического растворе­ния вторичных анодов позволяет получить селективные концентраты, что значительно облегчает процесс аффинажа.
    продолжение
--PAGE_BREAK--Аффинаж.
Концентраты платиновых металлов, полученные непосредственно из коренных руд или после переработки анодных шламов, и шлиховую платину из россыпных руд передают на аффинажные заводы для получения платиноидов. Технологические схемы аффинажа платиновых металлов насчитывают десятки взаимосвязанных операций с многочисленными оборотами растворов и полупро­дуктов, с постепенным выделением тех соединений, из которых непосредственно можно получить очищенные платиновые металлы.
Сырье для получения платиновых металлов.
Сырьем для получения платиновых металлов служат: шлиховая платина, извлекамая при разработке и обогащении россыпей, концентраты, выделяемые в результате обогащения и гидрометаллургической обработки анодных шламов электролиза никеля и меди, лом вторичных платиновых металлов и другие от­ходы.

Шлиховая платина -это смесь зерен самородной платины, представляющая собой сплав платиновых металлов с железом, медью, никелем и другими элемен­тами. Для шлиховой платины характерен следующий состав: до 85-90% Pt; 1-3% Ir; менее1% Rh и Ru; до 15% Fe.

Обогащенные анодные шламы содержат, %:

Pd……….35-45           Te……….1.5-2.5             Se………1.0-1.67

Pt………..15-20         Cu………0.7-2.5              Rh……….0.4-0.6

Ag………..8-10            Ni……….0.6-2.5              Ru…….0.08-0.15   

S……….2.0-5.0           Au………1.5-2.0              Ir……...0.04-0.08

Fe………1.5-4.0              

Переработка шлиховой платины.

Шлиховую платину вследствие высокого содержания в ней платины и отно­сительно малого количества загрязняющих элементов — серы и цветных металлов — перерабатывают по относительно простой схеме. Главнейшими операциями  являются растворение, доводка растворов и избирательное осаждение отдельных платиновых металлов.

Первый этап переработки шлиховой платины — ее растворение в царской водке, которую готовят смешением соляной кислоты (плотность 1.12) и азотной (плотность 1.58) в объемном отношении 3: 1. Вследствие высокой плотности шлиховой платины и быстрого оседания ее на дно реактора растворение осущест­вляют в чане с набором тарелок или при интенсивном перемешивании с помощью механических мешалок.

Вначале шлихи растворяют без подогрева, так как в первое время реакция растворения протекает весьма энергично, а затем (через 4-5 ч) подогревают до 110-120 °С, что ускоряет процесс растворения, который заканчивается примерно через сутки. Растворение платины идет по следующей реакции:

3Pt+4HNO3+18HCl=3H2[PtCl6]+4NO+8H2O.                               

В раствор переходит свыше 99% платины. Количество нерастворимого остатка обычно находится в пределах 4-6% поступающей на растворение массы шлиховой платины. В этом остатке содержится до 10% платины.

Для последующего избирательного осаждения платины в виде нераствори­мого хлороплатината аммония (NH4)2[PtCl6] необходимо предварительно перевести иридий (IV) и палладий (IV) соответственно в иридий (III) и палладий (III), иначе при осаждении платины хлористым аммонием иридий (IV) и палладий (IV) также выпадут в осадок в виде труднорастворимых соединений (NH4)2[PdCl6] и (NH4)2[IrCl6], загрязняющих платиновый осадок.

Раствор обрабатывают последовательно 5-, 12.5- и 25%-ным раствором хло­ристого аммония. При этом платина выпадает в осадок в виде хлороплатината:

H2[PtCl6]+2NH4Cl=(NH4)2[PtCl6]+2HCl                                          

Полученный хлороплатинат отфильтровывают и промывают на фильтре 5%-ным раствором хлористого аммония. Осадок хлороплатината прокаливают в муфельных электропечах в течении 10-12 ч с постепенным повышением темпера­туры до 1000 °С. При этом образуется губчатая платина, содержащая примеси других металлов. Поэтому ее измельчают, повторно растворяют в царской водке и переосаждают в виде хлороплатината аммония.

Очищенная платиновая губка имеет светло-серый цвет с металлическим блеском: при ударе она должна мыться, не рассыпаясь в порошок. Платина по­ставляется потребителю в слитках.
Переработка вторичного платинусодержащего сырья.
Как правило, все разновидности платинусодержащего сырья перерабатывают на аффинажных и металлургических предприятиях. Сырьем для аффинажных заводов служат лом изделий из платины и сплавов благородных и цветных метал­лов; платиновые концентраты (не менее 10 % Pt), получаемые на заводах вторич­ных благородных металлов при переработке бедного сырья и т. п.

На металлургические заводы направляют сырье, сравнительно бедное по содержанию платиновых металлов, например, отработанные катализаторы неко­торых типов, содержащие 0.05-0.5 % Pt.

Переработку отработанных катализаторов на основе оксида алюминия условно осуществляют двумя методами обеспечивающими: 1) выделение основы (Al2O3) с получением концентрата благородных металлов; 2) извлечение благо­родных металлов, не затрагивая при этом основы.

К методам первой группы относятся различные варианты сульфатизации. Так называемая “сухая” сульфатизация осуществляется смачиванием материала концентрированной серной кислоты, взятой в трехкратном избытке по отноше­нию к твердому, и прокаливанием при 300 °С. Процесс осуществляют в подовых печах с механическим перегребанием или во вращающихся трубчатых печах. Охлажденный спек выщелачивают водой. Выход нерастворимого остатка состав­ляет 12-13 % массы исходного материала. При переработке катализатора АП-56 содержание платины в кеке выщелачивания повышается до 4.6-4.8 %. Если растворение спека вести в 10 %-ном растворе H2SO4, то содержание платины в полученном концентрате достигает 7.5-8.5 %.

В целях повышения качества концентратов предложена комбинированная технологическая схема, включающая предварительное сернокислотное выщела­чивание оксида алюминия в 10-20 %-ном растворе H2SO4, обжиг кека при 550-600 °С и повторное выщелачивание огарка в сернокислом растворе. Технология обес­печивает получение концентрата, содержащего до 20-22 % платины. В соответст­вии с другим вариантом этой технологии нерастворимый остаток первого выщелачивания смешивают с углем и нагревают в атмосфере, не содержащей окислителя, до 750-800 °С.

Полученный огарок подвергают второму сернокислотному выщелачиванию с получением 25-30 % платинового концентрата.

При реализации метода сульфатизации наблюдается частичный переход пла­тины в раствор. Это обусловлено присутсвием с исходном катализаторе сорбиро­ванного молекулярного хлора, вследствие чего при сульфатизации создаются условия для образования хлоридных комплексов платиновых металлов. Из-за наличия на поверхности носителя адсорбированных минеральных солей, напри­мер, галогенидов, возможно также растворение платины с участием в качестве окислителя кислорода воздуха. Особо следует отметить, что “сухая” сульфатиза­ция, проводимая в условиях высоких температур (300 °С), как правило, приводит к активной ионизации воднорастворимых соединений металла.

Из всех рассмотренных вариантов технологии сернокислотного обогащения только последний обеспечивает невысокий переход платины в раствор, что обу­словлено проведением обжига в восстановительной атмосфере.

К первой группе относятся также щелочные методы, основанные на способ­ности оксида алюминия взаимодействовать со щелочами с образованием водно­растворимых алюминатов натрия. Так, сплавлением отработанных катализаторов с NaOH и последующим выщелачиванием сплава в воде можно получить концентрат, содержащий 18-22 % Pt.

Спекание отработанных катализаторов с кальцированной содой при 1200-1250 °С, охлаждение и последующее выщелачивание в растворе едкого натра при 90-95 °С позволяют получать концентраты, содержащие от 14 до 34 % Pt.

Известен способ выщелачивания оксида алюминия в автоклаве раствором NaOH при 160-175 °С и давлении 0.6-0.7 МПа с получением концентрата, содер­жащего 8-9 % Pt.

Методами второй группы используются, в основном, приемы хлорной метал­лургии, в частности, перевод платины в раствор в виде хлоридного комплекса. Оксид алюминия при этом остается индиферрентным к воздействию хлор-агентов. Из раствора платиноиды осаждают цементацией алюминием, цинком или магнием.

Из отработанных катализаторов платина может быть извлечена плавкой на медный сплав. Для ошлаковывания тугоплавкого оксида алюминия в шихту вводят известь и плавиковый шпат CaF2, для образования коллектирующей фазы — порошковую медь. Плавку ведут при 1500-1550 °С. Медный сплав, в котором концентрируются платиновые металлы, направляют на аффинаж. Шлаки с невы­соким содержанием благородных металлов возвращают в рудный передел.
    продолжение
--PAGE_BREAK--Производство и потребление.Таблица 7.
Производство платины, кг.


Ñòðàíà

1960 ã.

1965 ã.

1970 ã.

1975 ã.

1980 ã.

1985 ã.

ÞÀÐ

8900

16 600

33 200

57 600

68 400

71 000

Êàíàäà

6500

6300

6200

5400

5400

4700

ÑØÀ

318

354

250

200

220

250

Практическое применение этот металл стал находить еще в начале прошлого века, когда начали изготавливать из него реторты для хранения концентрирован­ной  серной кислоты. С тех пор платина служит материалом для тиглей, чашей, сеток, трубок и других лабораторных атрибутов.

Важнейшие области применения плотины – химическая и нефтеперерабаты­вающая промышленность. В качестве катализатора различных реакций использу­ется около половины всей потребляемой платины. Одним из важнейших катали­тических процессов является окисление аммиака с целью получения азотной кислоты (по оценочным данным на эти цели ежегодно идет  10-20% добываемой в мире платины).Точайшая сетка (до 5000 отверстий на квадратный сантиметр), сплетенная из платиновых проволочек, подобная тонкой ткани и столь же мягкая, как легкий шелк, составляет главную и ответственнейшую часть аппарата для окисления аммиака. Смесь аммиака с воздухом продувается через эту сетку, превращаясь в окислы азота и водяные пары. При растворении окислов азота в воде образуется азотная кислота. Большое количество платины расходуется также на изготовление кислото- и жароупорной аппаратуры химических заводов.

 íåôòåïåðåðàáàòûâàþùåé ïðîìûøëåííîñòè ñ ïîìîùüþ ïëàòèíîâûõ êàòàëè­çàòîðîâ íà óñòàíîâêàõ êàòàëèòè÷åñêîãî ðèôîðìèíãà ïîëó÷àþò âûñîêîîêòàíîâûé áåíçèí, àðîìàòè÷åñêèå óãëåâîäîðîäû è òåõíè÷åñêèé âîäîðîä èç áåíçèíîâûõ è ëèãðîèíîâûõ ôðàêöèé íåôòè.

Таблица 8.

 Потребление платины по отраслям в США в количественном и процентном соотношениях.

Ïëàòèíà

1960 ã.

1965 ã.

1970 ã.

1975 ã.

1980 ã.

Âñåãî:

10 007

13 484

14 558

21 065

34 800

Пî îòðàñëÿì:





















Àâòîìîáèëüíàÿ

-

-

-

-

-

-

8491

40%

15 200

44%

Õèìè÷åñêàÿ

2216

22%

4093

30%

4378

30%

4629

22%

5600

16%

Íåôòåïåðåðàáàòûâàþùàÿ

1109

12%

2526

19%

5595

38%

3359

16%

5500

16%

Ýëåêòðîòåõíè÷åñêàÿ

3325

33%

3322

25%

2562

18%

2290

11%

3800

11%

Ñòåêîëüíàÿ

1847

18%

1617

12%

1071

7%

1052

5%

2400

7%

Ìåäèöèíñêàÿ

494

5%

825

6%

217

2%

532

3%

1100

3%

Þâåëèðíàÿ

1016

10%

1101

8%

735

5%

712

3%

1200

3%

 àâòîìîáèëüíîé ïðîìûøëåííîñòè êàòàëèòè÷åñêèå ñâîéñòâà платины используют äëÿ äîæèãàíèÿ è îáåçâðåæèâàíèÿ âûõëîïíûõ ãàçîâ, ñ öåëüþ îñíàùåíèÿ àâòîìîáèëåé ñïåöèàëüíûìè óñòðîéñòâàìè ïî î÷èñòêå âûõëîïíûõ ãàçîâ îò âðåäíûõ ïðèìåñåé.Платина начинает окислять токсичные вещества выхлопа, начиная с 40 градусов по Цельсию, то есть сразу же после пуска двига­теля. И, что особенно важно, не боится перепадов температур и вибраций.Платина наносится тонким слоем на пористый керамический диск диаметром 127 миллиметров и толщиной чуть более карандаша. Мелкие поры этого диска обра­зуют поверхность более 60 квадратных метров. Для образования в них тончайшей пленки расходуется около 1,5 грамма драгоценного металла. Диск, облагорожен­ный платиной, помещается в коробку из нержавеющей стали, которая выдержи­вает нагрев до 800 градусов, и ставится у входа в глушитель. Такой катализатор превращает углеводороды, угарный газ в безобидную воду и углекислоту.

Ñòàáèëüíîñòü ýëåêòðè÷åñêèõ, òåðìîýëåêòðè÷åñêèõ è ìåõàíè÷åñêèõ ñâîéñòâ ïëþñ âûñî÷àéøàÿ êîððîçèîííàÿ è òåðìè÷åñêàÿ ñòîéêîñòü ñäåëàëè ýòîò ìåòàëë íåçàìåíèìûì äëÿ ñîâðåìåííîé ýëåêòðîòåõíèêè, àâòîìàòèêè è òåëåìåõàíèêè, ðàäèîòåõíèêè, òî÷íîãî ïðèáîðîñòðîåíèÿ.Используя лучшие качества металла, конструкторы создали целую гамму нагревателей, термопар, различных датчиков, работающих в агрессивных средах. Кроме того, платиново-иридиевые (3:1) контакты в прерывателях электрического тока васокого напряжения служат дольше и надежнее всех остальных. В компьютерах и ракетной технике, где нужна особая стабильность электрических характеристик, контакты делают из чистой платины.

Íåçíà÷èòåëüíàÿ ÷àñòü ïëàòèíû èäåò â ìåäèöèíñêóþ ïðîìûøëåííîñòü. Èç ïëàòèíû è åå ñïëàâîâ èçãîòîâëÿþò õèðóðãè÷åñêèå èíñòðóìåíòû, êîòîðûå, íå îêèñëÿÿñü, ñòåðèëèçóþòñÿ â ïëàìåíè ñïèðòîâîé ãîðåëêè.Специальные электроды из этого металла, вводимые в кровеносные сосуды, служат хирургам многих стран для диагностики различных, главным образом сердечных заболеваний. Такой метод называется платино-водородным, так как в основе его лежит элек­трохимическая реакция между этими элементами.Íåêîòîðûå ñîåäèíåíèÿ ïëàòèíû èñïîëüçóþò ïðîòèâ ðàçëè÷íûõ îïóõîëåé. Ïî ñòðóêòóðå áîëüøèíñòâî èç ýòèõ âåùåñòâ — ýòî íåýëåêòðîëèòû, цис-èçîìåðû, ïðîèçâîäíûå äâóõâàëåíòíîé ïëàòèíû. Ñàìûì ýôôåêòèâíûì ñîåäèíåíèåì ñ÷èòàåòñÿ цис-äèõëîðî­äèàìèíîïëàòèíà (II) [Pt(NH3)2Cl2]. Ýòî àêòèâíîå â õèìè÷åñêîì ñîîòíîøåíèè âåùåñòâî, â êîòîðîì èîíû Cl– ÷àñòè÷íî çàìåùàþòñÿ ìîëåêóëàìè âîäû ñ îáðàçîâàíèåì èîíà [Pt(NH3)2(H2O)2]2+. Ïðîöåññ èîíèçàöèè äèõëîðî­äèàìèíîïëàòèíû èäåò ãëàâíûì îáðàçîì â êëåòêàõ, ãäå êîíöåíòðàöèÿ õëîðèäîâ íèæå, ÷åì â ñûâîðîòêå êðîâè. Ïðîäóêò ãèäðîëèçà [Pt(NH3)2Cl2] ðåàãèðóåò ñ àçîòè­ñòûìè îñíîâàíèÿìè ÄÍÊ êàê áèôóíêöèîíàëüíûé àãåíò, âûçûâàÿ îáðàçîâàíèå  ïîïåðå÷íûõ ñâÿçåé ìåæäó íèòÿìè ÄÍÊ. Ýòî ñëóæèò îñíîâíîé ïðè÷èíîé íàðóøåíèÿ äåëåíèÿ è ãèáåëè îïóõîëåâûõ êëåòîê. Äîïîëíèòåëüíûì ìåõàíèçìîì ïðîòèâîîïóõîëåâîãî äåéñòâèÿ äèõëîðîäèàìèíîïëàòèíû ÿâëÿåòñÿ àêòèâàöèÿ èììóíèòåòà îðãàíèçìà.Важное применение платине нашли американские врачи из штата Огайо. Они разработали принципиально новый метод анестезии, кото­рый заключается в следующем: платиновой пластинкой длиной несколько санти­метров спинной мозг соединяют с электрическим стимулятором, при малейшем движении пациента аппарат посылает электрический сигнал в мозг, блокируя таким образом болевые ощущения. 

Платину применяют и зубные техники, которых привлекает ее неокисляе­мость – важнейшее свойство материала для протезов. В чистом виде платина слишком мягка, чтобы успешно выполнять эту роль, зато ее сплавы, обладающие высокой прочностью, успешно служат в качестве зубных коронок и искусствен­ных зубов. Сначала для повышения твердости к платине добавляли серебро и никель, затем для этой цели стали использовать золото и платиновые металлы, в союзе с ними коррозионностойкая платина обретает к тому же необычайную износостойкость.

Платина по-прежнему незаменима при изготовлении фильер для получения стекловолокна. В специальных тиглях из этого драгоценного металла выплавляют стекло, применяемое в лазерах и ддддддругих оптических приборах. Нанося тончайший слой этого металла на стекло, получают платиновые зеркала, обладающие так называемой односторонней прозрачностью: со стороны источ­ника света зеркало непрозрачно и отражает находящиеся перед ним предметы, как и обычное зеркало. Но с теневой стороны оно прозрачно, как стекло, и, таким образом, можно увидеть все, что находится по другую его сторону.

Плодотворно трудится платина и в сфере измерения высоких температур. В технике довольно широко применяют платиновые термометры сопротивления. Принцип их действия основан на том, что при нагревании электрическое сопро­тивление платины возрастает по очень строгой и постоянной зависимости от температуры. Подключенная к прибору, регистрирующему изменение сопротив­ления, платиновая проволочка без промедления сигнализирует ему о самых незначительных колебаниях температуры. Еще более распространены так назы­ваемые термопары – несложные, но очень чуткие термоизмерительные приборы. Если спаять две проволочки из разных металлов, а затем нагреть место спая, то в цепи появится электрический ток. Чем выше температура нагрева, тем большая электродвижущая сила возникает в цепи термопары. Для изготовления этих приборов часто используют платину и ее сплав с родием или иридием.

Таблица 9.

Цены на платину, доллар за 1 тройскую унцию.


1960ã.

1965ã.

1970ã.

1975ã.

1980ã.

1985ã.

íîÿáрь 1994

íîÿáрь 1995

83,5

98

132,5

170

420

480

407-416

406-407

Ðîñò ñïðîñà íà ïëàòèíó â ìèðå ÿâëÿåòñÿ çàëîãîì âûñîêèõ öåí. Ïî îöåíî÷íûì äàííûì êðóïíåéøåé â ìèðå êîìïàíèè ïî ìàðêåòèíãó ìåòàëëîâ ïëàòèíîâîé ãðóïïû Johnson Matthey (JM) ñïðîñ íà ïëàòèíó âûðîñ â 1994 ãîäó íà 7% è äîñòèã óðîâíÿ â 4.32 ìëí òðîéñêèõ óíöèé. Ïðè ýòîì ñ 1993 ãîäà ñîêðàùàåòñÿ ïîòðåáëåíèå ïëàòèíû â ïðîìûøëåííîñòè. Îäíàêî ðîñò çàêàçîâ þâåëèðîâ è àâòîìîáèëåñòðîèòåëåé ïåðåêðûâàåò ýòî ñîêðàùåíèå. Таквювелирномпроизвод­ствепотреблениеплатиныоцениваетсяв50 тонн.Âòîðîé ôàêòîð ïîâûøåíèÿ ñïðîñà íà ýòîò ìåòàëë — ðîñò èñïîëüçîâàíèÿ åãî â àâòîêàòàëèçàòîðàõ. Çà ýòî ðûíîê ïëàòèíû äîëæåí áûòü áëàãîäàðåí ïàðòèè çåëåíûõ, ïîñêîëüêó èìåííî ââåäåíèå áîëåå ñòðîãèõ ìåð ïî îãðàíè÷åíèþ âðåäíûõ âûáðîñîâ â àòìîñôåðó ïðèâåëî ê òîìó, ÷òî ïî÷òè âñå íîâûå àâòîìîáèëè îñíàùàþòñÿ àâòîêàòàëèçàòîðàìè.

Таблица 10.

 Потребление платины в мире в 1993 году (по информации Johnson Matthey).

Íåôòåïåðåðàáîòêà

12 %

Þâåëèðíàÿ ïðîìûøëåííîñòü

30 %

Èíâåñòèöèè

8 %

Ïðîèçâîäñòâî ñòåêëà

3 %

Ýëåêòðîòåõíèêà

4 %

Õèìè÷åñêàÿ ïðîìûøëåííîñòü

5 %

Àâòîêàòàëèçàòîðû

35 %

Äðóãèå

3 %

Бедность платиновых руд, отсутствие крупных месторождений и отсюда высокая стоимость металла, в значительной степени ограничивают практическое применение платины.




-   Приложение №1…………………………………….………………….23 

    продолжение
--PAGE_BREAK--       -     Рис.1………………………………………………….23

-         Рис.2………………………………………………….24

-         Рис.3………………………………………………….25

-   Приложение №2. Словарь терминов……...…………………………..26



Приложение №1.

Рис.1.  Технологическая схема переработки сульфидных медно-никелевых руд.
Ðóäà

    Îòâàëüíûå õâîñòû

                                         Обогащение




   Ìåäíûé êîíöåíòðàò                                Íèêåëåâûé êîíöåíòðàò

                                  

                                   Ãàçû         

          Обжиг          íà ïðîèçâîäñòâî      Окатывание или агломерация

                          H2SO4




     Отражательная                                                                          Газы

          плавка

                                                                           Пылеулавливание

 Îòâàëüíûé     Øòåéí

   øëàê                                                                            Ãàçû         Ïûëü






              Конвертирование                               Агломерат или окатыши




                   Черновая                                            Электроплавка

                      медь

                                                               Штейн                          Шлак

                   Огневое

              рафинирование

                                             Шлак     Конвертирование             Флотация




                                                            Файнштейн           Хвосты

                                                                                      в отвал

                     Аноды      Медный             Разделение                          Концентрат

                                  концентрат




          Электрорафинирование

                      меди                        Никелевый концентрат

                                                                                            Пыль

      Электролит            Катоды

                                           Магнитная      Обжиг             Газы

                                             фракция

                                                                                               Пыль

                                                         Закись никеля

                     Шлам                                                           Пылеулавливание

                                                        Восстановительная

                                                               плавка

                                                                                                      Газы

                                                               Аноды




                           Электролит            Электрорафинирование             Катодный

                           на очистку                        никеля                          никель




                                                               Шлам

     

                                                           Обогащение
                                                           Ïëàòèíîâûå

                                                           êîíöåíòðàòû

                                                           íà àôôèíàæ

Рис. 2. Принципиальная технологическая схема переработки медных и нике­левых шламов методом двойной сульфатизации. 
Никелевый шлам                                               Медный шлам
H2SO4                                                                             Пары, газ




                                  1ая сульфатизация

                             180 °С, Т: Ж=1.5, t=8-9 ч

H2O




                                    Выщелачивание

                        [H2SO4]=250 г/л, 80-90 °С,t=3 ч





                                      Фильтрация




                           Раствор                   Кек I




                                                                   H2SO4




                                                                                      Пары, газ

 В основное

производство                 2ая сульфатизация

                              t=300 °С, Т: Ж=1:4, t=10 ч

                  H2O                                            FeSO4




                                     Выщелачивание




                                       Фильтрация




             Раствор                                              Кек II

                                    NaCl                                            Пары, газ




        Осаждение AgCl                            Сушка, прокаливание




               продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Доработать Узнать цену написания по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме:

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Предпринимательская деятельность в рыночной экономике
Реферат Предпринимательская деятельность сущность, условия, регулирование
Реферат Профессиональный участники рынка ценных бумаг
Реферат Проблемы развития рынка ценных бумаг в России
Реферат Предпринимательство и акционерная собственность
Реферат Программа преодоления кризиса неплатежей (Минтопэнерго РФ )
Реферат Эволюция магматизма в зоне сочленения гранит зеленокаменных и гранулит-гнейсовых областей, Восточные Саяны, Сибирь
Реферат Проблема перезода к рыночным отношениям в России
Реферат Проблемы цены, стоимости и зар. платы рабочей силы в развитии рыночных отношений в НЭ
Реферат Через Гренландский ледниковый щит
Реферат Геохимия океана. Происхождение океана
Реферат Оценка инженерно-геологических и гидрогеологических условий района строительства
Реферат Мировые ресурсы и добыча алмазов и драгоценных металлов
Реферат Разрушение озонного слоя земли хлорфторуглеводородами
Реферат Экспериментальные исследования техногенного воздействия горных разработок на участок литосферы