Реферат по предмету "Математика"

Узнать цену реферата по вашей теме


Тригонометрия

Начнем с естественного «изначального» вопроса: откуда появились и как накапливались тригонометрические знания лю­дей? Задачи, в которых требуется измерять углы, появились так же давно и столь же настойчиво требовали своего решения, как и задачи, сводящиеся к измерению расстояний. Более того, эти две измерительные операции сосуществуют неразделимо. Роль измерения углов оказывается особенно значительной в тех случаях, когда непосредственное измерение


расстояний оказы­вается затрудненным или невозможным вследствие удален­ности или недоступности предметов. В свою очередь измерение углов может быть охарактеризовано измерением специальных отрезков прямой — тригонометрических линий. Тригонометрия начала свой путь практического и теоретического развития и про­ходит его вместе с геометрией. Все древние цивилизации вносили свой вклад в дело накоп­ления тригонометрических знаний. История математической науки дает тому немало убедительных примеров.


На одной из глиняных табличек Древнего Вавилона, возраст которой опре­деляют вторым тысячелетием до нашей эры, решается задача: вычислить длину хорды (s) круга, исходя из величины (d) диа­метра и высоты (а) сегмента, отсекаемого этой хордой. Описа­ние задачи и правила ее решения таковы, что в них заметно использование подобия треугольников и теоремы Пифагора. В привычной нам символике этот способ может быть выражен формулами


Руководитель одной из самых ранних научных школ Древней Греции Фалес из Милета (ок. 625—547 до н. э.) упоминал в числе научных достижений древних египтян метод определения высоты предмета по длине отбрасываемой им тени. Этот метод послужил основой гномоники — учения о солнечных часах. Как широко известно, гномон — это прямой шест, вертикально установленный на горизонтальной площадке.


Его тень в течение сол­нечного дня перемещается, «заметая» некоторую площадь. Сере­дина линии, окаймляющей эту площадь, будучи соединена с ос­нованием гномона, образует полуденную линию: север - юг. Отношение длины тени к длине шеста (или обратное отноше­ние) определяет высоту солнца над горизонтом. Деление линии дает части дня — часы. Регулярные замеры позволяют отыскать пункт солнцестояния, найти длину солнечного года и решить другие


задачи. Элементы тригонометрии содержались во многих сочинениях древнегреческих математиков. В трактате Архимеда «Измере­ние круга», например, приведена лемма: «Если вписанный в дугу окружности отрезок прямой сломан на две неравные части и если из середины дуги опустить на него перпендикуляр, то он разделит сломанную линию пополам». Это, очевидно, дает воз­можность вычислять хорды суммы и разности двух заданных дуг. В «Началах» Евклида, где автор избегает рассуждений метри­ческого (измерительного)


характера, содержится, конечно, мень­ше тригонометрических элементов, хотя их не столь уж трудно обнаружить и интерпретировать. Например, во второй книге это­го сочинения теоремы 12 и 13 по существу эквивалентны теоре­ме косинусов. Наибольшее внимание ученых тех давних времен привлекали тригонометрические соотношения на сферических поверхностях. Это было продиктовано нуждами астрономии и географии. Дело в том, что преобладающей гипотезой о строении вселенной была геоцентристская.


Согласно этой гипотезе земля есть шар, распо­ложенный в центре небесной сферы, которая равномерно вра­щается вокруг своей оси. Светила расположены на этой сфере. Их движения и подвергаются изучению. При этом большое значе­ние приобретают математические задачи о расположении точек и фигур на сферах и об их движениях (перемещениях). Работы, в которых подобные задачи решаются, получили название сферики.


В сферику включались теоремы об окруж­ностях и сферах, графические приемы построения сферических треугольников, сферопея или объединение кинематических моде­лей, изображающих мир (армиллы), и др. В сферике, таким образом, сочетались элементы практической астрономии, гео­графии (определение места наблюдения, направления пути по положению небесных светил) и геометрии на сферах. Плоская тригонометрия при таких условиях отнюдь не игра­ла лишь второстепенную роль по сравнению с


тригонометрией сферической. У нее была своя область приложений. Кроме того, она являлась частью практической астрономии, так как в последней широко используются ортогональные проектирования. Фигуры, находящиеся или передвигающиеся на сфере, проек­тируются на плоскости, избранные для отсчетов: плоскости го­ризонта, меридиана или др. Тем самым многие задачи сводят­ся к плоским случаям.


Измерительные операции при этом чаще всего прилагаются к хордам. Многократное применение подоб­ных операций неизбежно порождало стремление табулировать значения хорд, составлять таблицы их значений. Одно из самых первых значительных достижений в составле­нии тригонометрических таблиц относится ко II в. н. э. Оно находится в знаменитом сочинении К. Птолемея «Матема­тическое собрание в 13 книгах».


Сочинение это более известно под названием «Алмагест», что является средневековой латини­зацией арабского термина «Альмаджисти», который сам являет­ся переводом с греческого «Мегале», т. е. «Великая (книга)». В этом сочинении Птолемея собраны, систематизированы и обобщены все известные к тому времени результаты, получен­ные в астрономии и в смежных с нею науках. Великим же оно было названо потому, что существовала «Малая астрономия» - сборник сочинений, знать


содержание которых было необходимо для понимания того, что написано в «Алмагесте». В сборник входили, прежде всего, сочинения по сферике, а также те работы Архимеда, Евклида, Аристарха Самосского и других ученых, где рассматривались смежные математические задачи. Как плоская, так и сферическая тригонометрии входят в пер­вую из книг «Алмагеста». Метод составления тригонометриче­ских таблиц состоял в следующем.


В основе всех построений находится круг заданного диаметра. На нем рассматривается единственная тригонометрическая характеристика: длина хорды, стягивающей дугу, соответствующую данному центральному уг­лу. Задача состояла в составлении (вычислении) таблицы зна­чений этой функции с наибольшей по возможности точностью и высокой частотой в последовательности значений аргумента. По существу таблицы хорд являются первичной формой табли­цы синусов.


При вычислениях Птолемей пользуется 60-ричной системой счисления. Для удобства и определенности в вычислениях он делит окружность на 360 равных частей, диаметр — на 120 час­тей (соответственно радиус делится на 60 частей) с последую­щим более дробным делением градусов на минуты, секунды, терции и т. д. Для начала вычисляются длины хорд, являющихся сторонами правильных вписанных в окружность многоугольни­ков с 3, 4, 5, 6, 10 сторонами.


Чтобы из этих, «опорных» значений получать значения дру­гих (а в конечном счете любых) хорд, у Птолемея выведены соотношения, эквивалентные следующим: а) sin2 a + cos2 a = 1 —формула для вычисления длин хорд дополнительных углов; б) sin (a — в) = sin a cos в — cos a sin в — формула для вычис­ления синуса разности двух углов как частный случай теоремы Птолемея. К этим соотношениям он прибавляет способ нахождения хорд для половины заданного угла и соотношение,


эквива­лентное известному: Этих результатов оказалось для Птолемея достаточно, чтобы составить таблицу значений хорд для углов от 0 до 180° с час­тотой полградуса, что соответствует таблице синусов углов первой четверти с частотой в четверть градуса. Последующие проверки, произведенные в десятичной системе, показали, что значения оказались точными до пятого десятичного знака включительно. Таким образом, уже в самые первые века нашей эры (т. е. около


двух тысяч лет тому назад) элементы плоской тригоно­метрии сложились в единую систему и заняли определенное место в совокупности математических знаний. Они вначале су­ществовали в виде относительно элементарной части в системе неразделенных знаний, имевших своей главной целью решение задач практической астрономии. По своему значению они усту­пали основам сферической тригонометрии, так как теоремы последней непосредственно примыкали к астрономическим суж­дениям. Применения же плоской тригонометрии к измерениям не­доступных


расстояний и, следовательно, к решению треуголь­ников и других фигур стимулировали составление таблиц три­гонометрических функций и почти полностью от этого зависели. Также рано и естественно определились направления разви­тия плоской тригонометрии. Они состояли во введении других тригонометрических характеристик, кроме птолемеевских хорд; в отыскании формул, выражающих связи между этими характе­ристиками; в разработке вычислительных приемов, имеющих


целью облегчить составление таблиц тригонометрических функ­ций. По этим направлениям и происходило накопление тригоно­метрических знаний в последующие века. Процесс накопления замедлялся или ускорялся в зависимости от общего хода разви­тия математических и вообще научных знаний. Подъем и ус­корение происходили в эти времена главным образом в Индии (начиная с IV—VI вв.) и в государствах Ближнего и


Среднего Востока (начиная с VIII—IX вв.). Математики и астрономы, работавшие на территории Индостанского полуострова, восприняли греческую тригонометрию хорд и широко ее применяли. В их руках она получила многочис­ленные усовершенствования, среди которых следующие: а) замена хорды полухордой и введение таким образом ли­нии синусов; б) введение линии косинусов и синусов-версусов (т. е. обра­щенных синусов): sinvers a = R — cos a; в) выражение величины тригонометрических линий в частях


окружности и подготовка тем самым радианного измерения углов; г) фактическое введение линий тангенсов и котангенсов при решении задач об определении недоступных расстояний и высот без явной их интерпретации как новых тригонометрических объектов; д) составление таблиц значений тригонометрических функций. В науке арабоязычных стран Ближнего и Среднего Востока накопление и совершенствование тригонометрических знаний происходило гораздо энергичнее. Оно достигало такого уровня, который фактически означал происходившее


выделение триго­нометрии в отдельную, обладающую возрастающей долей само­стоятельности часть математики. Общеизвестно, что становление науки, в том числе матема­тики, в указанных государствах сопровождалось (а в ряде мест начиналось) систематическим изучением математических со­чинений, написанных в Древней Греции и в других странах. Рукописи собирались во всех местностях, куда распространя­лось влияние арабских халифатов. Свозили эти сочинения в ад­министративные центры, где их изучали, переводили на


араб­ский язык, устраняли ошибки, уточняли данные, снабжали тек­сты комментариями. Затем их дополняли результатами собствен­ных исследований. Так в те времена складывались научные школы и научная литература, опирающаяся в интересующей нас области — тригонометрии — в основном на достижения индий­ской и древнегреческой математики и астрономии. На этом пути рано, начиная, по-видимому, с VIII в стали появляться арабские зиджи.


Это были сборники астрономиче­ских и тригонометрических таблиц, сопровождаемых поясне­ниями и доказательствами соотношений между тригонометри­ческими функциями. Зиджи являлись как учебниками, так и справочниками при решении разнообразных задач: измерения времени, определения географических координат, расположение планет на небесной сфере, вычисления времени восхода и за­хода солнца, луны и их затмений. К нашему времени сохранилось свыше 100 зиджей, среди которых — знаменитый «Гургандский», составленный


в Самарканде в научной школе Улугбека (1394—1449). Зиджи более раннего времени были целиком ориентированы на составление возможно более точных тригонометрических таб­лиц. Из содержания зиджей видно, что не позднее IX в. были вве­дены и табулированы вслед за синусом, косинусом и синусом-версусом новые тригонометрические функции: тангенс, котангенс, секанс и косеканс. Сравнительно быстро они приобрели самостоя­тельные трактовки.


С течением времени становилось все труднее включать быстро разрастающийся тригонометрический материал в рамки зиджа. Поэтому, начиная с X—XI вв. стали появляться отдельные (само­стоятельные) трактаты о плоской и сферической тригономет­рии. В сочинениях такого рода тригонометрические линии начали получать свою трактовку уже без обращения к птолемеевской системе построения хорд (так делал, например, аль-Фараби). В ряде других сочинений постепенно вводились основные соотношения между тригонометрическими


функциями, которые снаб­жались доказательствами и по мере возможности систематизи­ровались. Так, в частности, поступал аль-Баттани (ок. 858— 929) в работе «Усовершенствование Алмагеста». Сочинение это впоследствии оказало большое влияние и на развитие тригоно­метрии в Европе. Такой же характер имел и не меньшее влия­ние оказал «Канон Мас’уда» аль-Бируни (973—1048). Вы­числительные трудности арабскими математиками также были успешно


преодолены. Об этом, например, говорит получение значения sin 1° с точностью до 17-го знака (в десятичной записи) в таблицах Каши, работавшего в Самарканде в научном центре, основанном Улугбеком. Сосредоточимся теперь на вопросе о том, как тригонометрия преобразовалась в самостоятельную часть математики. Как было сказано ранее, происходило накопление тригоно­метрических знаний и этот процесс обогащения привел к тому, что начиная примерно с XIII в. накопленный материал стал подвергаться систематизации,


составляя отдельную, во многом самостоятельную, область математики — тригонометрию. Убедительным доказательством того, что такое качественное изменение происходило, можно считать появление специальных сочинений, посвященных систематическому изложению тригоно­метрии. Впервые подобные сочинения появились, как было выше указано, среди арабских рукописей. Приведем еще один, пожа­луй, наиболее характерный пример: это «Трактат о полном че­тырехстороннике»


Насирэддина Туей (1201 — 1274). Трактат этот состоит из пяти частей (книг). Первые две книги содержат вспомогательный материал для построения тригоно­метрии: соответственно теорию составных отношений и доказа­тельство теоремы Менелая для плоского четырехсторонника. В третьей книге введены понятия синуса и косинуса, правила решения плоских треугольников и доказательство теоремы си­нусов. В четвертой и в пятой книгах излагаются основы сфериче­ской тригонометрии.


В первой из них рассмотрены доказательст­ва теоремы Менелая для полного сферического четырехсторонника. В другой собраны методы решения сферических треуголь­ников, в том числе косоугольных. Для этого доказываются тео­ремы синусов и тангенсов. Такая структура тригонометрических сочинений сделалась в арабских сочинениях стандартной.


Более подробно эта часть истории тригонометрии освещена в очень хорошо написанной брошюре Г. П. Матвиевской «Ста­новление плоской и сферической тригонометрии» (М.: Знание, 1982). В ней показано, как из вспомогательного раздела астро­номии тригонометрия превращалась в самостоятельную матема­тическую дисциплину. В Европе первое сочинение, в котором тригонометрия рас­сматривалась как самостоятельная математическая дисциплина, было написано в 1462—1464 гг.


Его автором был ИоганнМюллер (1436—1476), более известный в истории науки как Региомонтан (по месту рождения). Называлось это сочи­нение «Пять книг о треугольниках всех видов». Основное содер­жание его, по всей видимости, позаимствовано из арабских источников, главным образом из упомянутого выше сочинения Насирэддина Туей. Однако оно в значительной степени пере­работано, систематизировано, дополнено собственными резуль­татами автора и мастерски изложено.


Хотя автор при жизни не успел его издать и его напечатали лишь в 1533 г но сочинение это было известно и ранее, сыграв большую роль в дальнейшем развитии тригонометрии. До сих пор тригонометрия формировалась и развивалась под определяющим влиянием астрономии. Положение в этом смысле мало изменилось даже тогда, когда самостоятельное существо­вание тригонометрии стало общепризнанным фактом. Вслед за Региомонтаном, тригонометрией много занимался


Коперник, посвятивший ей две главы своего знаменитого капитального труда «Об обращениях небесных тел» (1543). К таблице тан­генсов Региомонтана Коперник добавил таблицу секансов, что позволило заменять деление на синус и косинус умножением в целях облегчения вычислений. Знаменитый астроном Тихо-Браге (1546—1601) разработал много вычислительных прие­мов, облегчающих задачу решения треугольников как плоских, так и сферических.


Таблицы тригонометрических функций, по форме и по составу близкие к ныне употребляемым, составил в 1551 г. Ретик, ученик Коперника. К концу XVI в. устойчивый характер приобрели названия всех тригонометрических функций. Техника оперирования с тригонометрическими функциями до­стигла к этому времени высокого уровня, и математики не встре­чали в этом вопросе принципиальных трудностей. В сочине­ниях И. Кеплера, Й. Бюрги, Ф. Виета и других математиков встречаются (и нередко) сложные преобразования


с тригономет­рическими функциями, выведены многие формулы. Особенно при­мечательными для тематики, рассматриваемой в настоящей главе, представляются работы Виета. Исходя из известных уже формул для синуса и косинуса двух углов, Виет получил выражения для этих же функций в случае кратных аргументов, а также многие формулы, в том чис­ле рекуррентные. Как уже было рассказано в главе 4 настоя­щей книги, среди результатов


Виета появились и такие, в кото­рых устанавливались связи между тригонометрией и алгеброй. Существо этого открытия состояло в том, что Виету удалось свести задачу решения кубических уравнений в неприводимом случае к задаче о трисекции угла. Аналогию эту он сумел рас­ширить, установив связи между задачами о делении угла на рав­ные части и задачами выделения классов алгебраически разре­шимых уравнений. В последующем связи между алгебраиче­скими и тригонометрическими результатами не прерывались.


Новое обогащение содержания тригонометрии происходило как часть истории математического анализа. И когда после пер­вых ошеломляющих открытий понадобилось привести в систему математический анализ, пришлось сделать то же и с тригономет­рическими функциями. Эта работа, ее результаты нашли свое от­четливое выражение в трудах Л. Эйлера. Теорию тригонометри­ческих функций Эйлер изложил в 8-й главе 1-го тома своей книги «Введение


в анализ бесконечных» (1748 г на русском языке из­дана в 1961 г.). Тем самым он завершил более или менее успеш­ные попытки своих ближайших предшественников. Эйлер ввел близкую к привычной нам символику, полностью разъяснил вопрос о знаках всех тригонометрических функций любого аргумента. Эти функции он рассматривал как безраз­мерные числа, называя их общим термином «трансцендентные количества, получающиеся из круга».


Тем самым был сделан важный шаг. Дело в том, что пред­шественники Эйлера неизменно связывали понимание тригоно­метрических функций с образами линий в круге некоторого радиуса, называя его «полным синусом» (sinus totus). Теперь же тригонометрические функции составили просто некоторый класс аналитических функций как действительных, так и комп­лексных аргументов, что было проделано с характерной для того времени смелостью и оправдывалось


на первых порах только правильностью и полезностью достигаемых при этом резуль­татов. Вскоре, в 1770 г появилось и удержавшееся до наших дней название тригонометрические функции. Его ввел Г. С. Клюгель в работе «Аналитическая тригонометрия». В то же примерно время (т. е. во второй половине XVIII в.) построение общей системы тригонометрических и примыкающих к ним знаний развивалось и в несколько ином направлении.


И. Г. Ламберт (1728—1777) в «Очерках об употреблении математики и ее приложений» (1770) провел обобщение триго­нометрии на четырехугольники, создав таким образом тетрагонометрию. Еще через несколько лет, в 1774—1776 гг в работах А. И. Лекселя (1741 —1784) было произведено дальней­шее обобщение и построена полигонометрия. Рассматривая n-угольник со сторонам а1, a2, аn и углами ф1, ф2, фn между продолжениями сторон и предыдущими


сторонами, Лексель по­лучил соотношения: Суммы в левых частях приведенных равенств эквивалентны суммам векторов, направленных по сторонам многоугольников. Из этих формул, справедливых и для невыпуклых, и для само­пересекающихся многоугольников, в работах Лекселя выведены основные формулы тригонометрии и тетрагонометрии. Затем он распространил теорию на 5, 6, 7-угольники и решил ряд задач на исследование n-угольников,


исходя из заданных диагоналей и углов этих диагоналей со сторонами. Результаты Лекселя были существенно дополнены С. Люилье (1750—1840) в книге «Полигонометрия, или об измерении прямолинейных фигур» (1789). Основную роль в ис­следованиях Люилье играло выражение для площади много­угольника, которую он вычислял так: откинув одну из n сторон, он составил все парные произведения остальных n—1 сторон на синусы углов между этими сторонами и, складывая


полученные произведений, нашел удвоенную площадь много­угольника. Исходя из этой формулы, Люилье получил все фор мулы полигонометрии, в том числе и формулы Лекселя. Свои теоремы Люилье применил к решению n-угольника: по п—1 сторонам и n — 2 углам; по всем углам и n —2 сторонам; по всем сторонам и n — 3 углам. Наконец, Люилье обобщил и эти результаты на пространст­венные случаи и, развивая работы


Эйлера о многогранниках, создал (в 1799—1805) полиэдрометрию — учение об измерении многогранников (полиэдров), описав ее в работе «Теоремы полиэдрометрии». Основной теоремой полиэдрометрии является сле­дующая: «Площадь каждой грани многогранника равна сум­ме произведений площадей остальных граней на косинусы уг­лов, образуемых ими с этой гранью». Подведем итоги. Как видно из содержания, тригоно­метрия прошла следующие стадии развития:


1.Тригонометрия была вызвана к жизни в раннюю пору разумной деятельности людей, необходимостью производить измерения углов. 2.Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Непосредственным результатом этого было то, что стало возможным решать плоские треугольники главным образом с целью определения расстояний до удаленных или недоступных объектов. 3.В интересах практической астрономии и географических исследований были получены аналогичные


результаты для тре­угольников на сферических поверхностях. С тех пор плоская и сферическая тригонометрии развивались как неотъемлемые части единой науки. 4.Измерительный характер задач тригонометрии при массовом их повторении приводил к настоятельной необходимости та­булировать значения вводимых тригонометрических функций. 5.По мере оформления представлений о тригонометрических функциях они превращались в самостоятельные


объекты ис­следований, т. е. собственно в функции, объекты, обладающие самостоятельным значением и своими особыми свойствами. 6.В начале XVI в. были установлены взаимные интерпре­тации между решениями определенного класса неприводимых алгебраических уравнений и задачами о делении угла, тем са­мым положено начало установлению связей между алгеброй и тригонометрией. 7.В XVIII в. тригонометрические функции были включены в систему математического анализа в качестве одного из классов аналитических функций.


Почти одновременно тригономет­рия получила широкие обобщения в геометрическом плане. Таким образом, к XIX в. тригонометрия приобрела разнооб­разные интерпретации, не теряя своей теоретической целостно­сти, а наращивая ее.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Доработать Узнать цену написания по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ страхового рынка Бразилии 2
Реферат Анализ деятельности операционного отдела коммерческого банка
Реферат Анализ банковской структуры Российской Федерации на примере деятельности Сбербанка и банка Альфа
Реферат Анализ обращения российских муниципальных муниципальных ценных бумаг
Реферат Анализ инвестиционной деятельности предприятия 2
Реферат Анализ деятельности отдела операционного обслуживания юридических лиц Операционного управления
Реферат Анализ операций коммерческих банков с векселями
Реферат Анализ деятельности коммерческого банка 2
Реферат Анализ финансового состояния страховой компании 2
Реферат Анализ ликвидности банка
Реферат Анализ работы Мурманского филиала ЗАО МКБ Москомприватбанка
Реферат Анализ ресурсной базы на примере филиала АСБ Беларусбанк
Реферат Анализ кредитного портфеля банка
Реферат Анализ деятельности Сбербанка Российской Федерации (отдел корпоративного кредитования)
Реферат Анализ деятельности Сбербанка Российской Федерации отдел корпоративного кредитования