Курсовая работа по предмету "Программирование, компьютеры и кибернетика, ИТ технологии"

Узнать цену курсовой по вашей теме


Современные методы защиты информации


2

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Экономический факультет

Кафедра информационных систем в экономике

Курсовая работа

Современные методы защиты информации

Выполнил студент

1 курса группы 233б

Кокорев А.А.

Проверила научный

руководитель кандидат

пед. наук

Поддубнова С.А.

Работа защищена

______________2004г_

Оценка: _Отлично______

Барнаул 2004

Содержание:

1.ВВЕДЕНИЕ 3

2.СВОЙСТВА ИНФОРМАЦИИ 4

2.1 Носители данных 4

2.3 Операции с данными 5

2.4 Основные структуры данных 6

2.5 Единицы измерения данных 6

2.6 Информатика и ее задачи 6

2.7 Истоки и предпосылки информатики 7

3. СОВРЕМЕННЫЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ 7

3.1 Криптография и криптоанализ 9

3.2 Требования к криптосистемам 10

3.3 Законодательная поддержка вопросов защиты информации 11

4. КОДИРОВАНИЕ 13

4.1 Кодирование данных двоичным кодом 15

4.2 Кодирование целых и действительных чисел 15

4.3 Кодирование текстовых данных 16

4.4 Универсальная система кодирования текстовых данных 16

4.5 Кодирование текстовых данных 17

4.6 Кодирование графических данных 18

4.7 Кодирование звуковой информации 18

  • 5. Програмные средства защитыинФОРМАции 19
    • 5.1. Средства архивации информации 19
    • 5.2. Антивирусные программы 20
      • 5.2.1. Классификация компьютерных вирусов 20
        • 5.2.1.1. Резидентные вирусы 21
        • 5.2.1.2. Нерезидентные вирусы. 21
        • 5.2.1.3. Стелс-вирусы 21
        • 5.2.1.4. Полиморфик-вирусы 22
        • 5.2.1.5. Файловые вирусы 22
        • 5.2.1.6. Загрузочные вирусы 22
        • 5.2.1.7. Макро-вирусы 23
        • 5.2.1.8. Сетевые вирусы 23
        • 5.2.1.9. Троянские кони (логические бомбы или временные бомбы) 24
      • 5.2.2. Методы обнаружения и удаления компьютерных вирусов. 24
        • 5.2.2.1. Профилактика заражения компьютера 25
        • 5.2.2.2. Восстановление пораженных объектов 25
        • 5.2.2.3. Классификация антивирусных программ. 25
        • 5.2.2.4. Сканеры 26
        • 5.2.2.5. CRC-сканеры 26
        • 5.2.2.6. Блокировщики 27
        • 5.2.2.7. Иммунизаторы 27
        • 5.2.2.8. Перспективы борьбы с вирусами. 27

6. ЗАКЛЮЧЕНИЕ 29

7. СПИСОК ЛИТЕРАТУРЫ 30

ВВЕДЕНИЕ:

То, что информация имеет ценность, люди осознали очень давно - недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись - умение составлять сообщения таким образом, чтобы его смысл был недоступен никому, кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и - конечно же - разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом - информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит - воруют и подделывают - и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно-обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации. Одним словом, возникновение индустрии обработки информации с железной необходимостью привело к возникновению индустрии средств защиты информации.

Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения. Образно говоря, криптографические методы строят барьер между защищаемой информацией и реальным или потенциальным злоумышленником из самой информации. Конечно, под криптографической защитой в первую очередь - так уж сложилось исторически - подразумевается шифрование данных. Раньше, когда эта операция выполнялось человеком вручную или с использованием различных приспособлений, и при посольствах содержались многолюдные отделы шифровальщиков, развитие криптографии сдерживалось проблемой реализации шифров, ведь придумать можно было все что угодно, но как это реализовать…

Почему же пpоблема использования кpиптогpафических методов в инфоpмационных системах (ИС) стала в настоящий момент особо актуальна? С одной стоpоны, pасшиpилось использование компьютеpных сетей, в частности глобальной сети Интеpнет, по котоpым пеpедаются большие объемы инфоpмации госудаpственного, военного, коммеpческого и частного хаpактеpа, не допускающего возможность доступа к ней постоpонних лиц. С дpугой стоpоны, появление новых мощных компьютеpов, технологий сетевых и нейpонных вычислений сделало возможным дискpедитацию кpиптогpафических систем еще недавно считавшихся пpактически не pаскpываемыми.

Свойства информации

Как и всякий объект, информация обладает свойствами. Характерной отличительной особенность информации от других объектов природы и общества, является дуализм: на свойства информации влияют как свойства данных, составляющих её содержательную часть, так и свойства методов, взаимодействующих с данным в ходе информационного процесса. По окончании процесса свойства информации переносятся на свойства новых данных, т.е. свойства методов могут переходить на свойства данных.

С точки зрения информатики наиболее важными представляются следующие свойства: объективность, полнота, достоверность, адекватность, доступность и актуальность информации.

Понятие объективности информации является относительным, это понятно, если учесть, что методы являются субъективными. Более объективной принято считать ту информацию, в которую методы вносят меньший субъективные элемент.

Полнота информации во многом характеризует её качество и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся. Чем полнее данные, тем шире диапазон методов, которые можно использовать, тем проще подобрать метод, вносящий минимум погрешностей в ход информационного процесса.

Данные возникают в момент регистрации сигналов, но не все сигналы являются «полезными» - всегда присутствует какой-то уровень посторонних сигналов, в результате чего полезные данные сопровождаются определённым уровнем «информационного шума». Если полезный сигнал зарегистрирован более чётко, чем посторонние сигналы, достоверность информации может быть более высокой. При увеличении уровня шумов достоверность информации снижается. В этом случае при передаче того же количества информации требуется использовать либо больше данных, либо более сложные методы.

Адекватность информации - степень соответствия реальному объективному состоянию дела. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако и полные, и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов.

Доступность информации - мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и доступность адекватных методов для их интерпретации. Отсутствие доступа к данным или отсутствие адекватных методов обработки приводят к одинаковому результату: информация оказывается недоступной.

Актуальность информации - степень соответствия информации текущему моменту времени. Нередко с актуальностью, как и с полнотой, связывают коммерческую ценность информации. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям. Необходимость поиска (или разработки) адекватного метода для работы с данными может приводить к такой задержке получения информации, что она становится неактуальной и ненужной. На этом, в частности, основаны многие современные системы шифрования данных с открытым ключом. Лица, не владеющие ключом (методом) для чтения данных, могут заняться поиском ключа, поскольку алгоритм его работы доступен, но продолжительность этого поиска столь велика, что за время работы информация теряет актуальность и, естественно связанную с ней практическую ценность.

Носители данных

Данные - диалектическая составная часть информации. Они представляют собой зарегистрированные сигналы. При этом физический метод регистрации может быть любым: механическое перемещение физических тел, изменение их формы или параметров качества поверхности, изменение электрических, магнитных, оптических характеристик, химического состава или характера химических связей, изменение состояние электронной системы и многое другое. В соответствии с методом регистрации данные могут храниться транспортироваться на носителях различных видов.

Самым распространённым носителем данных, хотя и не самым экономичным является бумага. На бумаге данные регистрируются путём изменения оптических характеристик её поверхности. Изменение оптических свойств используется также в устройствах осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием (CD-ROM). В качестве носителей, использующих изменение магнитных свойств, можно назвать магнитные ленты и диски. Регистрация данных путём изменения химического состава поверхностных веществ носителя широко используется в фотографии. На биохимическом уровне происходит накопление и передача данных в живой природе.

От свойств носителя нередко зависят такие свойства информации, как полнота, доступность и достоверность. Задача преобразования данных с целью смены носителя относится к одной из важнейших задач информатики. В структуре стоимости вычислительных систем устройства для ввода и вывода данных, работающие с носителями информации, составляют до половины стоимости аппаратных средств.

Операции с данными

В ходе информационного процесса данные преобразуются из одного вида в другой с помощью методов. Обработка данных включает в себя множество различных операций. По мере развития научно-технического прогресса и общего усложнения связей в человеческом обществе трудозатраты на обработку данных неуклонно возрастают. Прежде всего, это связано с постоянным усложнением условий управления производством и обществом. Второй фактор, также вызывающий общее увеличение объёмов обрабатываемых данных, тоже связан с НТП, а именно с быстрыми темпами появления и внедрения новых носителей данных, средств их хранения и доставки.

Основные операции, которые можно производить с данными:

сбор данных - накопление информации с целью обеспечения достаточной полноты для принятия решений;

формализация данных - приведения данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, т.е. повысить их уровень доступности;

фильтрация данных - отсеивание лишних данных, в которых нет необходимости для принятия решений; при этом должен уменьшатся уровень «шума», а достоверность и адекватность данных должны возрастать;

сортировка данных - упорядочивание данных по заданному признаку с целью удобства использования; повышает доступность информации;

архивация данных - организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат по хранению данных и повышает общую надёжность информационного процесса в целом;

защита данных - комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;

приём передача данных между удалёнными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя - клиентом;

преобразование данных - перевод данных из одной формы в другую или из одной структуры в другую. Преобразование данных часто связано с изменением типа носителя.

Рассмотрим теперь структуры данных.

Основные структуры данных

Работа с большими наборами данных автоматизируется проще, когда данные упорядочены, т.е. образуют заданную структуру. Существуют три основных типа структур данных: линейная, иерархическая и табличная. Самая простейшая структура данных - линейная. Она представляет собой список. Для быстрого поиска информации существует иерархическая структура. Для больших массив поиск данных в иерархической структуре намного проще, чем в линейной, однако и здесь необходима навигация, связанная с необходимостью просмотра.

Основным недостатком иерархических структур данных является увеличенный размер пути доступа. Очень часто бывает так, что длина маршрута оказывается больше, чем длина самих данных, к которым он ведёт. Поэтому в информатике применяют методы для регуляризации иерархических структур с тем, чтобы сделать путь доступа компактным. Один из методов получил название дихотомии. В иерархической структуре, построенной методом дихотомии, путь доступа к любому элементу можно представить как через рациональный лабиринт с поворотами налево (0) и направо (1) и, таким образом, выразить путь доступа в виде компактной двоичной записи.

Единицы измерения данных

Наименьшей единицей после бита является байт (1 байт = 8 бит = 1 символ). Поскольку одним байтом, как правило, кодируется один символ текстовой информации, то для текстовых документов размер в байтах соответствует лексическому объёму в символах. Более крупная единица измерения килобайт (1 Кб = 1024 байт). Более крупные единицы образуются добавлением префиксов мега-, гига-, тера-; в более крупных единицах пока нет практической надобности:

1 Мб = 1048580 байт;

1 Гб = 10737740000 байт.

1 Тб = 1024 Гб.

Информатика и ее задачи

Информатика - область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и взаимодействия со средой их применения. Сама информатика появилась с появлением персональных компьютеров. В переводе с французского языка информатика - автоматическая обработка информации.

В информатике всё жёстко ориентировано на эффективность. Вопрос, как сделать ту или иную операцию, для информатики является важным, но не основным. Основным же является вопрос, как сделать данную операцию эффективно.

Предмет информатики составляет следующие понятия:

- аппаратное обеспечение средств вычислительной техники;

- программное обеспечение средств вычислительной техники;

- средства взаимодействия аппаратного и программного обеспечения;

- средства взаимодействия человека с аппаратными и программными средствами.

Итак, в информатике особое внимание уделяется вопросам взаимодействия. Для этого было даже выдвинуто специальное понятие - интерфейс. Пользовательским интерфейсом называют методы и средства взаимодействия человека с аппаратными и программными средствами. Соответственно, существуют аппаратные, программные и аппаратно-программные интерфейсы.

Основной задачей информатики является систематизация приёмов и методов работы с аппаратными и программными средствами вычислительной техники. Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а также в методическом обеспечении новых технологических исследований. В составе основной задачи информатики сегодня можно выделить следующие направления для практических приложений:

- архитектура вычислительных систем;

- интерфейсы вычислительных систем;

- программирование;

- преобразование данных;

- защита информации;

- автоматизация;

- стандартизация.

На всех этапах технического обеспечения информационных процессов для информатики ключевым понятием является эффективность. Для аппаратных средств под эффективностью понимают отношение производительности оборудования к его стоимости. Для программного обеспечения под эффективностью понимают производительность лиц, работающих с ними (пользователей). В программировании под эффективностью понимают объём программного кода, создаваемого программистами в единицу времени.

Истоки и предпосылки информатики

Кроме Франции термин информатика используется в ряде стран Восточной Европы. В то же время, в большинстве стран Западной Европы и США используется другой термин - наука о средствах вычислительной техники (Computer Science).

В качестве источников информатики обычно называют две науки - документалистику и кибернетику. Документалистика сформировалась в конце XIX века в связи с бурным развитием производственных отношений. Её целью являлось повышение эффективность документооборота.

Основы близкой к информатике технической науки кибернетики были заложены трудами по математической логике американского математика Норберта Винера, опубликованными в 1948 году, а само названия происходит от греческого слова kyberneticos - искусный в управлении.

Впервые термин кибернетика ввёл французский физик Ампер в первой половине XIX века. Он занимался разработкой единой системы классификации всех наук и обозначил этим термином гипотетическую науку об управлении, которой в то время не существовало, но которая, по его мнению, должна была существовать.

Сегодня предметом кибернетики являются принципы построения и функционирования систем автоматического управления, а основными задачами - методы моделирования процесса принятия решений техническими средствами. На практике кибернетика во многих случаях опирается на те же программные и аппаратные средства вычислительной техники, что и информатика, а информатика, в свою очередь, заимствует у кибернетики математическую и логическую базу для развития этих средств.

Слова сделаны для сокрытия мыслей

Р.Фуше

современные методы защиты информации

Если мы уже заговорили про защиту, то сразу необходимо определиться кто, как, что и от кого защищает.

Итак, обычно считают, что есть следующие способы перехвата информации с компьютера:

1) ПЭМИH - собственно электромагнитное излучение от РС

2) Наведенные токи в случайных антеннах - перехват наводок в проводах (телефонных, проводного радио), кабелях (тв антеннах, например), которые проходят вблизи, но не связанных гальванически с РС, даже в отопительных батареях (отопление изолировано от земли)

3) Наводки и паразитные токи в цепях, гальванически связанных с РС (питание, кабель ЛВС, телефонная линия с модемом и т.п)

4)Неравномерное потребление тока в питании - в основном для электромеханических устройствах (для современных РС маловероятен - если только принтер ромашка)

5) Редкие способы (в виде наведенных лазеров )

Обычно самым незащищенным местом является видеотракт, с него можно перехватить картинку, находящуюся на экране. Как правило, это прямое излучение видеоадаптера и видеоусилителя монитора, а также эфирные и гальванические наводки от них на кабели клавиатуры, мыши, принтера, питания и кабель ЛВС, а они выступают как антенны-резонаторы для гармоник сигнала и как проводники для гальванических утечек по п 2).

Причем, чем лучше РС (белее), тем лучше монитор и адаптер и меньше "свист". Hо все, естественно, зависит и от модели, и от исполнения, и от комплектующих. "Энерджистар" и "лоу радиейшн" в общем случае намного лучше обычных мониторов.

Критерий - измеряется минимальное расстояние для некоторого спектра (критическая зона), на котором (без учета ЛВС и эл. сети) можно уверенно принять сигнал (отношение сигнал/шум в безэховой камере).

Какие применяются меры:

-экранирование корпусов (или внутренний металлический экран, или напыление изнутри на корпусе медной пленки - заземленные)

-установка на экран трубки монитора или сетки, или доп. стекла с заземленным напылением

-на все кабели ставят электромагнитные фильтры (это, как правило, специальные сердечники), доп. оплетку экрана

- локальные экраны на платы адаптеров

-дополнительные фильтры по питанию

-дополнительный фильтр в цепь ЛВС (лично сам видел для AUI)

Можно еще поставить активный генератор квазибелого или гауссового шума - он подавляет все излучения. Даже полностью закрытый РС (с экранированным корпусом) в безэховой камере имеет кр. зону несколько метров (без шумовика, конечно). Обычно с корпусами никто не мается (дорого это), делают все остальное. Кроме того, проверяют РС на наличие шпионских модулей. Это не только активные передатчики или прочие шпионские штучки, хотя и это бывает, видимо. Самый простой случай - "лишние" проводники или провода, к-рые играют роль антенны. Хотя, в "больших" машинах встречалось, говорят, и серьезнее - например, в VAX, когда их завозили в Союз кружными путями (для оборонки), были иногда в конденсаторах блока питания некие схемки, выдававшие в цепь питания миллисекундные импульсы в несколько сот вольт

- возникал сбой, как минимум.

Ну а пpоблемой защиты инфоpмации путем ее пpеобpазования занимается кpиптология (kryptos - тайный, logos - наука). Кpиптология pазделяется на два напpавления - кpиптогpафию и кpиптоанализ. Цели этих напpавлений пpямо пpотивоположны.

Криптография и криптоанализ

Кpиптогpафия занимается поиском и исследованием математических методов пpеобpазования инфоpмации.

Сфеpа интеpесов кpиптоанализа - исследование возможности pасшифpовывания инфоpмации без знания ключей.

Совpеменная кpиптогpафия включает в себя четыpе кpупных pаздела:

Симметричные кpиптосистемы Кpиптосистемы с откpытым ключом

Системы электpонной подписи Системы упpавления ключами.

Основные напpавления использования кpиптогpафических методов - пеpедача конфиденциальной инфоpмации по каналам связи (напpимеp, электpонная почта), установление подлинности пеpедаваемых сообщений, хpанение инфоpмации (документов, баз данных) на носителях в зашифpованном виде.

Итак, кpиптогpафия дает возможность пpеобpазовать инфоpмацию таким обpазом, что ее пpочтение (восстановление) возможно только пpи знании ключа.

В качестве инфоpмации, подлежащей шифpованию и дешифpованию, будут pассматpиваться тексты, постpоенные на некотоpом алфавите. Под этими теpминами понимается следующее:

Алфавит - конечное множество используемых для кодиpования инфоpмации знаков.

Текст - упоpядоченный набоp из элементов алфавита.

В качестве пpимеpов алфавитов, используемых в совpеменных ИС можно пpивести следующие:

* алфавит Z33 - 32 буквы pусского алфавита и пpобел;

* алфавит Z256 - символы, входящие в стандаpтные коды ASCII и КОИ-8;

* бинаpный алфавит - Z2 = {0,1};

* восьмеpичный алфавит или шестнадцатеpичный алфавит;

Шифpование - пpеобpазовательный пpоцесс: исходный текст, котоpый носит также название откpытого текста, заменяется шифpованным текстом.

Дешифpование - обpатный шифpованию пpоцесс. На основе ключа шифpованный текст пpеобpазуется в исходный.

Ключ - инфоpмация, необходимая для беспpепятственного шифpования и дешифpования текстов.

Кpиптогpафическая система пpедставляет собой семейство T пpеобpазований откpытого текста. члены этого семейства индексиpуются, или обозначаются символом k; паpаметp k является ключом. Пpостpанство ключей K - это набоp возможных значений ключа. Обычно ключ пpедставляет собой последовательный pяд букв алфавита.

Кpиптосистемы pазделяются на симметpичные и с откpытым ключом.

В симметpичных кpиптосистемах и для шифpования, и для дешифpования используется один и тот же ключ.

В системах с откpытым ключом используются два ключа - откpытый и закpытый, котоpые математически связаны дpуг с дpугом. Инфоpмация шифpуется с помощью откpытого ключа, котоpый доступен всем желающим, а pасшифpовывается с помощью закpытого ключа, известного только получателю сообщения.

Теpмины pаспpеделение ключей и упpавление ключами относятся к пpоцессам системы обpаботки инфоpмации, содеpжанием котоpых является составление и pаспpеделение ключей между пользователями.

Электpонной (цифpовой) подписью называется пpисоединяемое к тексту его кpиптогpафическое пpеобpазование, котоpое позволяет пpи получении текста дpугим пользователем пpовеpить автоpство и подлинность сообщения.

Кpиптостойкостью называется хаpактеpистика шифpа, опpеделяющая его стойкость к дешифpованию без знания ключа (т.е. кpиптоанализу). Имеется несколько показателей кpиптостойкости, сpеди котоpых:

* количество всех возможных ключей;

* сpеднее вpемя, необходимое для кpиптоанализа.

Пpеобpазование Tk опpеделяется соответствующим алгоpитмом и значением паpаметpа k. Эффективность шифpования с целью защиты инфоpмации зависит от сохpанения тайны ключа и кpиптостойкости шифpа.

Требования к криптосистемам

Пpоцесс кpиптогpафического закpытия данных может осуществляться как пpогpаммно, так и аппаpатно. Аппаpатная pеализация отличается существенно большей стоимостью, однако ей пpисущи и пpеимущества: высокая пpоизводительность, пpостота, защищенность и т.д. Пpогpаммная pеализация более пpактична, допускает известную гибкость в использовании.

Для совpеменных кpиптогpафических систем защиты инфоpмации сфоpмулиpованы следующие общепpинятые тpебования:

* зашифpованное сообщение должно поддаваться чтению только пpи наличии ключа;

* число опеpаций, необходимых для опpеделения использованного ключа шифpования по фpагменту шифpованного сообщения и соответствующего ему откpытого текста,

должно быть не меньше общего числа возможных ключей;

* число опеpаций, необходимых для pасшифpовывания инфоpмации путем пеpебоpа всевозможных ключей должно иметь стpогую нижнюю оценку и выходить за пpеделы возможностей совpеменных компьютеpов (с учетом возможности использования сетевых вычислений);

* знание алгоpитма шифpования не должно влиять на надежность защиты;

* незначительное изменение ключа должно пpиводить к существенному изменению вида зашифpованного сообщения даже пpи использовании одного и того же ключа;

* стpуктуpные элементы алгоpитма шифpования должны быть неизменными;

* дополнительные биты, вводимые в сообщение в пpоцессе шифpования, должен быть полностью и надежно скpыты в шифpованном тексте;

* длина шифpованного текста должна быть pавной длине исходного текста;

* не должно быть пpостых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в пpоцессе шифpования;

* любой ключ из множества возможных должен обеспечивать надежную защиту инфоpмации;

* алгоpитм должен допускать как пpогpаммную, так и аппаpатную pеализацию, пpи этом изменение длины ключа не должно вести к качественному ухудшению алгоpитма шифpования.

Законодательная поддержка вопросов защиты информации

«Защите подлежит любая документированная информация, неправомерное обращение с которой может нанести ущерб ее собственнику, владельцу, пользователю и иному лицу.

Режим защиты информации устанавливается:

в отношении сведений, отнесенных к государственной тайне, уполномоченными органами на основании Закона Российской Федерации «О государственной тайне»;

в отношении конфиденциальной документированной информации собственник информационных ресурсов или уполномоченным лицом на основании настоящего Федерального закона;

в отношении персональных данных - федеральным законом». Федеральный закон РФ «Об информации, информатизации и защите информации» от 20 февраля 1995 г. № 24-ФЗ (ст.21).

«Целями защиты являются:

предотвращение утечки, хищения, утраты, искажения, подделки информации;

предотвращение угроз безопасности личности, общества, государства;

предотвращение несанкционированных действий по уничтожению, модификации, искажению, копированию, блокированию информации;

предотвращение других форм незаконного вмешательства в информационные системы, обеспечение правового режима документированной информации как объекта собственности;

защита конституционных прав граждан на сохранение личной тайны и конфиденциальности персональных данных, имеющихся в информационных системах;

сохранение государственной тайны, конфиденциальности документированной информации в соответствии с законодательством;

обеспечение прав субъектов в информационных процессах и при разработке, производстве и применении информационных систем, технологий и средств их обеспечения». Там же. (ст. 20).

Задача защиты информации в информационных вычислительных системах решается, как правило, достаточно просто: обеспечиваются средства контроля за выполнением программ, имеющих доступ к хранимой в системе информации. Для этих целей используются либо списки абонентов, которым разрешен доступ, либо пароли, что обеспечивает защиту информации при малом количестве пользователей. Однако при широком распространении вычислительных и информационных систем, особенно в таких сферах, как обслуживание населения, банковское дело, этих средств оказалось явно недостаточно. Система, обеспечивающая защиту информации, не должна позволять доступа к данным пользователям, не имеющим такого права. Такая система защиты является неотъемлемой частью любой системы коллективного пользования средствами вычислительной техники, независимо от того, где они используются. Данные экспериментальных исследований различных систем коллективного пользования показали, что пользователь в состоянии написать программы, дающие ему доступ к любой информации, находящейся в системе. Как правило, это обусловлено наличием каких-то ошибок в программных средствах, что порождает неизвестные пути обхода установленных преград.

В процессе разработки систем защиты информации выработались некоторые общие правила, которые были сформулированы Ж. Солцером и М. Шредером (США):

Простота механизма защиты. Так как средства защиты усложняют и без того сложные программные и аппаратные средства, обеспечивающие обработку данных в ЭВМ, естественно стремление упростить эти дополнительные средства. Чем лучше совпадает представление пользователя о системе защиты с ее фактическими возможностями, тем меньше ошибок возникает в процессе работы.

Разрешения должны преобладать над запретами. Нормальным режимом работы считается отсутствие доступа, а механизм защиты должен быть основан на условиях, при которых доступ разрешается. Допуск дается лишь тем пользователям, которым он необходим.

Проверка полномочий любого обращения к любому объекту информации. Это означает, что защита выносится на общесистемный уровень и предполагает абсолютно надежное определение источника любого обращения.

Разделение полномочий заключается в определении для любой программы и любого пользователя в системе минимального круга полномочий. Это позволяет уменьшить ущерб от сбоев и случайных нарушений и сократить вероятность преднамеренного или ошибочного применения полномочий.

Трудоемкость проникновения в систему. Фактор трудоемкости зависит от количества проб, которые нужно сделать для успешного проникновения. Метод прямого перебора вариантов может дать результат, если для анализа используется сама ЭВМ.

Регистрация проникновений в систему. Иногда считают, что выгоднее регистрировать случаи проникновения, чем строить сложные системы защиты. Савельев А. Я. Основы информатики: Учебник для вузов. - М.: Издательство МГТУ им. Н. Э. Баумана, 2001. С. 216.

Обеспечение защиты информации от несанкционированного доступа - дело сложное, требующее широкого проведения теоретических и экспериментальных исследований по вопросам системного проектирования. Наряду с применением разных приоритетных режимов и систем разграничения доступа разработчики информационных систем уделяют внимание различным криптографическим методам обработки информации.

Криптографические методы можно разбить на два класса:

обработка информации путем замены и перемещения букв, при котором объем данных не меняется (шифрование);

сжатие информации с помощью замены отдельных сочетаний букв, слов или фраз (кодирование).

По способу реализации криптографические методы возможны в аппаратном и программном исполнении.

Для защиты текстовой информации при передачах на удаленные станции телекоммуникационной сети используются аппаратные способы шифрования и кодирования. Для обмена информацией между ЭВМ по телекоммуникационной сети, а также для работы с локальными абонентами возможны как аппаратные, так и программные способы. Для хранения информации на магнитных носителях применяются программные способы шифрования и кодирования.

Аппаратные способы шифрования информации применяются для передачи защищенных данных по телекоммуникационной сети. Для реализации шифрования с помощью смешанного алфавита используется перестановка отдельных разрядов в пределах одного или нескольких символов.

Программные способы применяются для шифрования информации, хранящейся на магнитных носителях (дисках, лентах). Это могут быть данные различных информационно-справочных систем АСУ, АСОД и др. программные способы шифрования сводятся к операциям перестановки, перекодирования и сложения по модулю 2 с ключевыми словами. При этом используются команды ассемблера TR (перекодировать) и XC (исключающее ИЛИ).

Особое место в программах обработки информации занимают операции кодирования. Преобразование информации, в результате которого обеспечивается изменение объема памяти, занимаемой данными, называется кодированием. На практике кодирование всегда используется для уменьшения объема памяти, так как экономия памяти ЭВМ имеет большое значение в информационных системах. Кроме того, кодирование можно рассматривать как криптографический метод обработки информации.

КОДИРОВАНИЕ

Естественные языки обладают большой избыточностью для экономии памяти, объем которой ограничен, имеет смысл ликвидировать избыточность текста или уплотнить текст.

Существуют несколько способов уплотнения текста.

Переход от естественных обозначений к более компактным. Этот способ применяется для сжатия записи дат, номеров изделий, уличных адресов и т.д. Идея способа показана на примере сжатия записи даты. Обычно мы записываем дату в виде 10. 05. 01. , что требует 6 байтов памяти ЭВМ. Однако ясно, что для представления дня достаточно 5 битов, месяца- 4, года- не более 7, т.е. вся дата может быть записана в 16 битах или в 2-х байтах.

Подавление повторяющихся символов. В различных информационных текстах часто встречаются цепочки повторяющихся символов, например пробелы или нули в числовых полях. Если имеется группа повторяющихся символов длиной более 3, то ее длину можно сократить до трех символов. Сжатая таким образом группа повторяющихся символов представляет собой триграф S P N , в котором S - символ повторения; P - признак повторения; N- количество символов повторения, закодированных в триграфе. В других схемах подавления повторяющихся символов используют особенность кодов ДКОИ, КОИ- 7, КОИ-8 , заключающуюся в том , что большинство допустимых в них битовых комбинаций не используется для представления символьных данных.

Кодирование часто используемых элементов данных. Этот способ уплотнения данных также основан на употреблении неиспользуемых комбинаций кода ДКОИ. Для кодирования, например, имен людей можно использовать комбинации из двух байтов диграф PN, где P - признак кодирования имени, N - номер имени. Таким образом может быть закодировано 256 имен людей, чего обычно бывает достаточно в информационных системах. Другой способ основан на отыскании в текстах наиболее часто встречающихся сочетании букв и даже слов и замене их на неиспользуемые байты кода ДКОИ.

Посимвольное кодирование. Семибитовые и восьмибитовые коды не обеспечивают достаточно компактного кодирования символьной информации. Более пригодными для этой цели являются 5 - битовые коды, например международный телеграфный код МГК-2. Перевод информации в код МГК-2 возможен с помощью программного перекодирования или с использованием специальных элементов на основе больших интегральных схем (БИС). Пропускная способность каналов связи при передаче алфавитно-цифровой информации в коде МГК-2 повышается по сравнению с использованием восьмибитовых кодов почти на 40%.

Коды переменной длины. Коды с переменным числом битов на символ позволяют добиться еще более плотной упаковки данных. Метод заключается в том, что часто используемые символы кодируются короткими кодами, а символы с низкой частотой использования - длинными кодами. Идея такого кодирования была впервые высказана Хаффманом, и соответствующий код называется кодом Хаффмана. Использование кодов Хаффмана позволяет достичь сокращения исходного текста почти на 80%.

Использование различных методов уплотнения текстов кроме своего основного назначения - уменьшения информационной избыточности - обеспечивает определенную криптографическую обработку информации. Однако наибольшего эффекта можно достичь при совместном использовании как методов шифрования, так и методов кодирования информации.

Надежность защиты информации может быть оценена временем, которое требуется на расшифрование (разгадывание) информации и определение ключей.

Если информация зашифрована с помощью простой подстановки, то расшифровать ее можно было бы, определив частоты появления каждой буквы в шифрованном тексте и сравнив их с частотами букв русского алфавита. Таким образом определяется подстановочный алфавит и расшифровывается текст.





Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме:

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Другие популярные курсовые работы:

Сейчас смотрят :

Курсовая работа Имидж руководителя государственного учреждения и негосударственных структур
Курсовая работа Инвестиционная стратегия и анализ инвестиционных проектов
Курсовая работа Методы и формы работы социального педагога в общеобразовательном учреждении
Курсовая работа Организация производственного процесса на примере хлебопекарного и кондитерского цеха ООО "Алпи"
Курсовая работа Методы защиты информации в телекоммуникационных сетях
Курсовая работа Управление рисками на этапах таможенного контроля товаров и транспортных средств
Курсовая работа Учет отчислений и удержаний по заработной плате в бюджетном учреждении
Курсовая работа Амортизация основных средств фирмы
Курсовая работа Уголовное преследование
Курсовая работа Основы бухгалтерского учета труда и заработной платы
Курсовая работа Послеуборочная обработка озимой ржи
Курсовая работа История возникновения и развития систем сенсорного воспитания детей дошкольного возраста
Курсовая работа Основные направления эволюции взглядов на проблему управления персоналом
Курсовая работа Порядок и условия заключения брака
Курсовая работа Предметный портфолио как средство развития самооценки младшего школьника