Курсовая работа по предмету "Программирование, компьютеры и кибернетика, ИТ технологии"

Узнать цену курсовой по вашей теме


Математические модели в расчетах на ЭВМ



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра АУТПТЭК

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по дисциплине:

«Математические модели в расчетах на ЭВМ»

Выполнил:

студент гр.АКГ-05

Коновалов А.А.

Проверил:

ст.преп. Склярова Г.А

асс. Марусей О.В.

Алчевск 2007

РЕФЕРАТ

Данная курсовая работа содержит 30 страниц, 16 рисунков, 2 таблицы, 3 источника литературы.

Целью данной курсовой работы является построение АЧХ, КЧХ, ФЧХ (моделирование в частотной области) и переходный процесс (моделирование во временной области).

В результате выполненной курсовой работы были получены ФЧХ, КЧХ, ФЧХ и переходный процесс.

СТРУКТУРНАЯ СХЕМА, ПЕРЕДАТОЧНАЯ ФУНКЦИЯ, МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ, КРИВАЯ ПЕРЕХОДНОГО ПРОЦЕССА.

СОДЕРЖАНИЕ

Введение

1. Моделирование в частотной области

2. Моделирование во временной области

Заключение

Перечень ссылок

ВВЕДЕНИЕ

Часто при решении задач автоматизации приходится прибегать к моделированию. Это связанно с тем, что большинство технологических объектов являются сложными и исследовать реакцию этих объектов на те или иные объекты является достаточно дорогой операцией.

Различают три основных вида модели:

-- алгоритмическая

-- физическая

-- математическая

Алгоритмическая модель - это некоторая последовательность действий и операций.

Физическая модель - это точная копия технологического объекта в увеличенном или уменьшенном масштабе.

Математическая модель может быть представлена в виде алгебраических или систем алгебраических, дифференциальных или систем дифференциальных уравнений.

В виду удобства работы наибольшее распространение при исследовании получили математические модели.

В данной работе произведем моделирование соединения звеньев в частотной области.

1 МОДЕЛИРОВАНИЕ В ЧАСТОТНОЙ ОБЛАСТИ

Все технологические объекты являются достаточно сложными объектами и они описываются дифференциальными уравнениями высоких порядков или системой дифференциальных уравнений. Для исследования объекта в частотной области достаточно построить соответствующие частотные характеристики:

- амплитудно-частотная характеристика показывает зависимость амплитуды сигнала на выходе объекта от частоты сигнала на его входе при неизменной амплитуде входного сигнала;

- фазочастотная характеристика показывает на сколько (на какой угол) выходной сигнал опережает или отстает от входного сигнала при изменении частоты входного сигнала от 0 до ?;

- комплексная частотная характеристика или амплитудно-фазная характеристика показывает, как изменяется в комплексной плоскости модуль и фаза исследуемого объекта при изменении частоты от 0 до ?.

Проводим моделирование в частотной области соединения звеньев представленных в задании на рисунке 1.1

При известных передаточных функциях:

Введем формулы для вычисления частотных функций, амплитуды и фазы данных звеньев:

Выполним преобразования структурной схемы. При преобразовании структурных звеньев необходимо будет находить значения передаточной и частотой (производим замену p=j?) функций, общей вещественной и общей мнимой составляющих, модуля и фазы полученных звеньев.

Для параллельного соединения эти значения рассчитываются по формулам (1.1)-(1.6):

(1.1)

где - передаточная функция i-того звена.

(1.2)

где (j?) - частотная функция i-того звена.

(1.3)

где - вещественная составляющая i-того звена.

(1.4)

где - мнимая составляющая i-того звена.

(1.5)

. (1.6)

При последовательном соединении значения будут рассчитываться по формулам (1.7)-(1.12):

(1.7)

где - передаточная функция i-того звена.

(1.8)

где (j?) - частотная функция i-того звена.

(1.9)

где - модуль i- того звена.

(1.10)

где - фаза i- того звена.

(1.11)

(1.12)

Выполним эквивалентные преобразования заданных соединений элементов. Заменим параллельное соединение звеньев , одним эквивалентным звеном (рисунок 1.2).

Рисунок 1.2 - Структурные преобразования

При параллельном соединении звеньев передаточная и частотная функции находятся по формулам (1.1)-(1.2):

Общая вещественная составляющая и общая мнимая составляющая определяются соответственно как сумма вещественных и сумма мнимых составляющих отдельных звеньев по формулам (1.3)-(1.4):

При параллельном соединении удобнее работать с вещественными и мнимыми составляющими. Если требуется вычислить модуль и фазу такого соединения, то результирующие модуль и фаза определяются по формулам

(1.5)-(1.6):

Заменим параллельное соединение звеньев одним эквивалентным звеном (рисунок 1.3).

Рисунок 1.3 - Структурные преобразования

При параллельном соединении звеньев передаточная и частотная функции находятся по формулам (1.1)-(1.2):

Общая вещественная составляющая и общая мнимая составляющая определяются соответственно как сумма вещественных и сумма мнимых составляющих отдельных звеньев по формулам (1.3)-(1.4):

При параллельном соединении удобнее работать с вещественными и мнимыми составляющими. Если требуется вычислить модуль и фазу такого соединения, то результирующие модуль и фаза определяются по формулам (1.5)-(1.6):

Заменим последовательное соединение звеньев , одним

эквивалентным звеном (рисунок 1.4).

X Y

Рисунок 1.4 - Структурные преобразования

При последовательном соединении удобнее работать с модулями и фазами звеньев. Определим их по формулам (1.9)-(1.10):

По формулам (1.11)-(1.12) определим общую вещественную и общую мнимую составляющие:

Заменим последовательное соединение звеньев , одним эквивалентным звеном (рисунок 1.5).

X Y

Рисунок 1.5 - Структурные преобразования

При последовательном соединении удобнее работать с модулями и фазами звеньев. Определим их по формулам (1.9)-(1.10):

По формулам (1.11)-(1.12) определим общую вещественную и общую мнимую составляющие:

Заменим параллельное соединение звеньев , одним эквивалентным звеном (рисунок 1.6).

X Y

Рисунок 1.6 - Структурные преобразования

При параллельном соединении звеньев передаточная и частотная функции находятся по формулам (1.1)-(1.2):

Общая вещественная составляющая и общая мнимая составляющая определяются соответственно как сумма вещественных и сумма мнимых составляющих отдельных звеньев по формулам (1.3)-(1.4):

При параллельном соединении удобнее работать с вещественными и мнимыми составляющими. Если требуется вычислить модуль и фазу такого соединения, то результирующие модуль и фаза определяются по формулам (1.5)-(1.6):

Заменим последовательное соединение звеньев , одним эквивалентным звеном (рисунок 1.7).

X Y

Рисунок 1.7 - Структурные преобразования

При последовательном соединении удобнее работать с модулями и фазами звеньев. Определим их по формулам (1.9)-(1.10):

По формулам (1.11)-(1.12) определим общую вещественную и общую мнимую составляющие:

Блок-схема алгоритма представлена на рисунке 1.8

Текст разработанной программы приведён на рисунке 1.9.

При разработке были введены следующие идентификаторы:

W- начальное значение диапазона изменения частоты, а также для хранения текущего значения частоты;

W1- конечное значение частоты;

W2- шаг изменения частоты.

Для ввода значений параметров звеньев и используются массивы К(7) и Т(7). Ввод значений этих параметров осуществляется с помощью операторов DATA READ. Вычисленные значения выходных переменных сохраняются в файле mm_8 txt на диске А.

OPEN "A:mm_8.txt" FOR OUTPUT AS #2

CLS : Pi = 3.141592654#: W = 0: W1 = 1: W2 = .05

DIM K(7), T(7)

DATA 1,10,2,15,1,20,2,5,4,10,3,12,1,8

FOR i = 1 TO 7

READ K(i), T(i)

PRINT USING "K(#)=#, T(#)=##"; i; K(i); i; T(i)

NEXT i

10 FOR i = 1 TO 7

A(i) = K(i) / SQR(T(i) ^ 2 * W ^ 2 + 1)

F(i) = -ATN(T(i) * W)

P(i) = A(i) * COS(F(i))

Q(i) = A(i) * SIN(F(i))

NEXT i

REM ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Pe(1) = P(1) + P(4)

Qe(1) = Q(1) + Q(4)

Ae(1) = SQR(Pe(1) ^ 2 + Qe(1) ^ 2)

Fe(1) = ATN(Qe(1) / Pe(1))

IF Pe(1) < 0 THEN Fe(1) = Fe(1) - Pi

REM ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Pe(2) = P(2) + P(5)

Qe(2) = Q(2) + Q(5)

Ae(2) = SQR(Pe(2) ^ 2 + Qe(2) ^ 2)

Fe(2) = ATN(Qe(2) / Pe(2))

Рисунок 1.9, лист1- Листинг программы.

IF Pe(2) < 0 THEN Fe(2) = Fe(2) - Pi

REM ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Ae(3) = Ae(1) * Ae(2)

Fe(3) = Fe(1) + Fe(2)

Pe(3) = Ae(3) * COS(Fe(3))

Qe(3) = Ae(3) * SIN(Fe(3))

REM ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Ae(4) = A(6) * A(7)

Fe(4) = F(6) + F(7)

Pe(4) = Ae(4) * COS(Fe(4))

Qe(4) = Ae(4) * SIN(Fe(4))

REM ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Pe(5) = Pe(3) + Pe(4)

Qe(5) = Qe(3) + Qe(4)

Ae(5) = SQR(Pe(5) ^ 2 + Qe(5) ^ 2)

Fe(5) = ATN(Qe(5) / Pe(5))

IF Pe(5) < 0 THEN Fe(5) = Fe(5) - Pi

REM ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Ae(6) = Ae(5) * A(3)

Fe(6) = Fe(5) + F(3)

Pe(6) = Ae(6) * COS(Fe(6))

Qe(6) = Ae(6) * SIN(Fe(6))

PRINT USING "W=#.##, Ae(#)=+##.###, Fe(#)=+#.###, Pe(#)=+##.###, Qe(#)=+#.###"; W; 6; Ae(6); 6; Fe(6); 6; Pe(6); 6; Qe(6)

PRINT #2, USING "#.## +##.### +#.### +##.### +##.###"; W; Ae(6); Fe(6); Pe(6); Qe(6)

REM ПРОВЕРКА ДИАПАЗОНА ЧАСТОТЫ

IF W < W1 THEN W = W + W2

IF W < W1 THEN GOTO 10

CLOSE #2

END

Рисунок 1.9, лист 2- Листинг программы моделирования в частотной области

Полученные результаты занесём в таблицу 1.1

Таблица 1.1 - Результаты расчетов

?

Ae(6)

Fe(6)

Pe(6)

Qe(6)

0.00

+21.000

+0.000

+21.000

+0.000

0.05

+11.973

-1.631

-0.718

-11.951

0.10

+4.996

-2.523

-4.071

-2.896

0.15

+2.328

-3.030

-2.313

-0.258

0.20

+1.227

-3.354

-1.199

+0.259

0.25

+0.712

-3.578

-0.646

+0.301

0.30

+0.446

3.741

-0.368

+0.251

0.35

+0.295

-3.864

-0.221

+0.195

0.40

+0.205

-3.961

-0.140

+0.150

0.45

+0.147

-4.038

-0.092

+0.115

0.50

+0.110

-4.102

-0.063

+0.090

0.55

+0.083

-4.154

-0.044

+0.071

0.60

+0.065

-4.199

-0.032

+0.057

0.65

+0.052

-4.237

-0.024

+0.046

0.70

+0.042

-4.270

-0.018

+0.038

0.75

+0.034

-4.298

-0.014

+0.031

0.80

+0.028

-4.324

-0.011

+0.026

0.85

+0.024

-4.346

-0.008

+0.022

0.90

+0.020

-4.366

-0.007

+0.019

0.95

+0.017

-4.384

-0.005

+0.016

По полученным данным построим графики, рис. 1.9 - 1.11

Рисунок 1.10 - Комплексная частотная характеристика соединения звеньев

Рисунок 1.11 - Амплитудно-частотная характеристика соединения звеньев

Рисунок 1.12 - Фазо-частотная характеристика соединения звеньев

2 МОДЕЛИРОВАНИЕ ВО ВРЕМЕННОЙ ОБЛАСТИ

Провести моделирование во временной области соединения звеньев представленных на рисунке 2.1.

Рисунок 2.1 - Схема соединения звеньев

Передаточные функции элементов имеют вид:

Прежде чем перейти к моделированию во временной области необходимо составить в соответствии с заданной структурой соединения элементов, систему дифференциальных уравнений, которой будет описываться заданная система. При этом следует помнить, что все численные методы дают наиболее точное решение для дифференциальных уравнений первого порядка.

Передаточной функцией называется отношение изображения по Лапласу выходной величины, к изображению по Лапласу входной величине при нулевых начальных условиях, формула (2.1):

(2.1)

Составим систему дифференциальных уравнений в соответствии с (2.1):

Преобразуем полученные формулы:

Текст разработанной программы приведён на рисунке 2.3. При разработке программы были введены следующие идентификаторы:

T - начальное значение,

T1 - конечное значение,

H - шаг интегрирования,

М - шаг печати,

К - для организации печати с принятым шагом.

Для вычисления правых частей уравнения системы введены идентификаторы F1-F2. Текущее значение интегральной кривой, являющейся выходной функцией, хранящееся в переменной Y3.

CLS

PRINT "Моделирование во временной области"

PRINT "Введите M, H, T, T1"

INPUT M, H, T, T1

YI = 0: Y2 = 0: Y3 = 0: Y4 = 0: Y5 = 0: Y6 = 0: Y7 = 0: K = 1: X = 1

15 PRINT "T="; T, "Y3="; Y3

20 F1 = (X - Y1) / 10: Y = Y1 + F1 * H

F2 = (X - Y) / 10: Y1 = Y1 + ((F1 + F2) / 2) * H

F1 = (2 * (Y1 + Y4) - Y2) / 15: Y = Y2 + F1 * H

F2 = (2 * (Y1 + Y4) - Y) / 15: Y2 = Y2 + ((F1 + F2) / 2) * H

F1 = (2 * X - Y4) / 5: Y = Y4 + F1 * H

F2 = (2 * X - Y) / 5: Y4 = Y4 + ((F1 + F2) / 2) * H

F1 = (3 * X - Y6) / 12: Y = Y6 + F1 * H

F2 = (3 * X - Y) / 12: Y6 = Y6 + ((F1 + F2) / 2) * H

F1 = (Y6 - Y7) / 8: Y = Y7 + F1 * H

F2 = (Y6 - Y) / 8: Y7 = Y7 + ((F1 + F2) / 2) * H

F1 = (4 * (Y1 + Y4) - Y5) / 10: Y = Y5 + F1 * H

F2 = (4 * (Y1 + Y4) - Y) / 10: Y5 = Y5 + ((F1 + F2) / 2) * H

F1 = (Y2 + Y5 + Y7 - Y3) / 20: Y = Y3 + F1 * H

F2 = (Y2 + Y5 + Y7 - Y) / 20: Y3 = Y3 + ((F1 + F2) / 2) * H

T = T + H

IF T > T1 THEN 100

IF T >= K * M THEN 80 ELSE 85

80 K = K + 1: GOTO 15

85 GOTO 20

CLS

100 END

Рисунок 2.3 - Листинг программы моделирования во временной области

После запуска программы были получены значения T и Y приведенные в таблице 2.1.

Таблица 2.1 - Значения T и Y

T

Y

0

0

20.00036

4.917364

40.00929

12.89664

60.00594

17.53008

80.00868

19.61416

100.003

20.46468

120.0072

20.79692

140.0023

20.92336

160.0013

20.97077

180.0004

20.98832

200.0094

20.99452

220.0084

20.99666

240.0074

20.99666

260.0025

20.99666

280.002

20.99666

300.0015

20.99666

По значениям, взятым из таблицы 2.1 построим переходную функцию соединения, приведенную на рисунке 2.4.

Рисунок 2.4 - График переходной функции заданной системы.

ЗАКЛЮЧЕНИЕ

В данной работе мы рассмотрели моделирование в частотной и во временной областях. По полученным данным построили Амплитудно-фазную характеристику, амплитудно-частотную характеристику, фазо-частотную характеристику (моделирование в частотной области) и переходный процесс (моделирование во временной области). Программное обеспечение было разработано на алгоритмическом языке Microsoft QuickBASIC. При построении графиков был использован пакет Mathcad 11 Enterprise Edition.

ПЕРЕЧЕРЬ ССЫЛОК

1. Бесерский В.А., Попов Е.П., Теория систем автоматического регулирования. - М.: Наука, 1972. - 798 с.




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме:

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Другие популярные курсовые работы:

Сейчас смотрят :

Курсовая работа Роль государства в рыночной экономике
Курсовая работа Особенности уголовной ответственности и наказания несовершеннолетних
Курсовая работа Экономическая безопасность
Курсовая работа Аудит расчетов с покупателями и заказчиками
Курсовая работа Статистическое изучение заработной платы
Курсовая работа Анализ производительности труда на предприятии
Курсовая работа Особенности гендерных стереотипов в современном обществе
Курсовая работа Учет и анализ выпуска готовой продукции
Курсовая работа Совершенствование организации рабочих мест на предприятии
Курсовая работа Судебная власть в Российской Федерации
Курсовая работа Система оценки кредитоспособности клиентов банка
Курсовая работа Финансовая система РФ
Курсовая работа Доказательство и доказывание в уголовном процессе
Курсовая работа Физическое воспитание детей дошкольного возраста
Курсовая работа Учёт реализации товаров и анализ товарооборота торговой организации