Курсовая работа по предмету "Химия"

Узнать цену курсовой по вашей теме


Об особенностях пострадиационного окисления захваченных радикалов в полиэтилене высокой и низкой плотности



Об особенностях пострадиационного окисления захваченных радикалов в полиэтилене высокой и низкой плотности

Пострадиационное окисление ухудшает эксплуатационные характеристики радиационно-модифицированного ПЭ. Ухудшение физико-механических свойств в пострадиационный период резко проявляется у ПЭВП и незначительно у ПЭНП [1, 2]. Например, различия в стойкости к растрескиванию для радиационно-модифицированных ПЭВП и ПЭНП, по данным работы [2], достигают двух порядков. Причина этих различий до Конца не установлена. Пострадиационная окислительная деструкция полимеров во многом определяется начальной стадией окисления -- взаимодействием с кислородом захваченных радикалов. Подробному исследованию окисления захваченных радикалов в ПЭВП посвящен ряд работ [3--5], в то время как ПЭНП изучен в этом отношении недостаточно. Целью настоящей работы является сравнительное изучение пострадиационного окисления захваченных радикалов в ПЭНП и ПЭВП. Объектами исследования были ПЭВП марки 20808-024, ПЭНП марки 15303-003 и сополимеры этилена с пропиленом или б-бутиленом при содержании сомономера 3--5 мол.%, синтезированные при низком давлении на катализаторах типа Циглера -- Натта. Пленки полимеров толщиной 200 мкм, полученные прессованием, подвергали воздействию г-излучения 66Со до доз 0,07--0,56 МГр при мощности дозы 0,01 МГр/ч. Облучение проводили в вакууме при комнатной температуре. Пострадиационное окисление захваченных радикалов изучали методом ЭПР на радиоспектрометре типа «Рубин». Как известно [3, 5], при облучении ПЭВП в вакууме при комнатной температуре в полимере накапливаются преимущественно аллильные радикалы, спектр ЭПР которых имеет характерную семикомпонентную структуру. Полученные нами спектры ЭПР захваченных радикалов, приведенные на рис. 1, показывают, что и в ПЭНП при облучении в аналогичных условиях накапливаются аллильные радикалы, причем концентрации захваченных радикалов в ПЭВП и ПЭНП после облучения в одинаковых условиях равны. По данным работы [3], в ПЭВП при комнатной температуре в вакууме аллильные радикалы являются высокостабильными, время их жизни достигает нескольких месяцев. Согласно полученной в настоящей работе кинетике гибели захваченных радикалов в вакууме при комнатной температуре (рис. 2), стабильность аллильных радикалов в ПЭНП ниже, чем в ПЭВП, однако различия в стабильности невелики, скорость гибели радикалов в двух полимерах различается в 1,5--2 раза.

Рис. 1. Спектры ЭПР захваченных радикалов в пленках ПЭВП (а) и ПЭНП (б), замороженных до -196° после f-облучения в вакууме при комнатной температуре до дозы0,40 МГр и в пленке ПЭВП (в), выдержанной после г-облучения на воздухе при комнатной температуре в течение 40 сут

Рис. 2. Зависимость относительной концентрации захваченных аллильных радикалов от времени в г -облученных до дозы 0,40 МГр пленках ПЭВП (1) и ПЭНП (2), находящихся в вакууме при комнатной температуре

Рис. 3. Зависимость относительной концентрации захваченных аллильных радикалов от времени после перенесения из вакуума на воздух при комнатной температуре г-облученных до дозы 0,40 МГр пленок ПЭВП (1), ПЭНП (4), сополимеров этилена с 5 мол.% пропилена (2) и 3 мол.% бутилена (3)

Рис. 4. Зависимость отношения концентрации стабильных радикалов с к начальной концентрации аллильных радикалов с0 от времени в пленке ПЭВП, перенесенной из вакуума в кислород при давлении 760 мм рт. ст. после облучения до дозы 0,40 МГр (1), на воздух после облучения до дозы 0,07 МГр (2) и 0,56 МГр (3). Концентрации с0 для доз 0,07 и 0,56 МГр различались в 4 раза

Контакт с кислородом воздуха приводит к резкому увеличению скорости гибели захваченных радикалов: в ПЭВП -- в несколько раз, в ПЭНП -- почти на три порядка (рис. 3). При этом резко возрастает различие в скоростях гибели захваченных радикалов в ПЭВП и ПЭНП: если в вакууме скорости различаются в 1,5--2 раза, то на воздухе -- на два порядка. Увеличение скорости гибели захваченных в полиэтилене радикалов в присутствии кислорода обусловлено их окислением [3] с образованием перекисных радикалов, менее стабильных, чем исходные углеводородные радикалы, и быстро гибнущих. Таким образом, кинетика гибели стабильных захваченных радикалов на воздухе соответствует кинетике их окисления.

Кинетику гибели захваченных радикалов в ПЭВП (рис. 3, кривая 1) можно приближенно разделить на две стадии -- быструю, которая протекает в течение первых нескольких часов, и медленную, которая заканчивается лишь через 30--40 сут. Очевидно, первая стадия соответствует окислению захваченных радикалов в аморфных областях полимера, вторая -- окислению в кристаллических областях. В ПЭНП гибель всех радикалов заканчивается через 3--4 ч.

Эти данные показывают, что для кристаллических областей ПВЭП и ПЭНП скорости окисления захваченных радикалов различаются на два порядка. Отсюда следует, что скорость диффузии кислорода в кристаллические области ПЭВП на два порядка ниже таковой для ПЭНП. Это может быть вызвано меньшими размерами и большей дефектностью кристаллитов в ПЭНП. Однако основной причиной столь большого различия, по-видимому, является различная плотность кристаллических областей в ПЭВП и ПЭНП.

Согласно результатам рентгеноструктурных исследований [7, 8], наличие ответвлений в полимерных цепях ПЭ приводит к увеличению параметров элементарной ячейки, т. е. к уменьшению плотности кристаллических областей. В результате плотность кристаллитов линейного и разветвленного ПЭ (ПЭВП и ПЭНП) различается на 1,5--2%. Аналогичные различия в плотностях кристаллических областей имеют ПЭВП и сополимеры этилена с пропиленом, бутиленом, пентеном, гексеном при содержании сомономера 4--5 мол. % [8]. Как видно из рис. 3, для таких сополимеров кинетика пострадиационного окисления захваченных радикалов мало отличается от наблюдаемой для ПЭНП. Таким образом, небольшое различие в плотностях кристаллических областей ПЭВП и ПЭНП приводит к существенному изменению проницаемости кристаллитов для кислорода и скорости окисления захваченных радикалов.

Различия в пострадиационном окислении радикалов в ПЭВП и ПЭНП проявляются не только в скорости окисления. Если в ПЭНП окисление аллильных радикалов приводит к быстрой гибели всех радикалов, то в ПЭВП в процессе окисления появляются и накапливаются радикалы, спектр ЭПР которых (рис. 1, в) представляет собой синглет шириной 5 э с g=2,0046 (для исходных аллильных радикалов g=2,0026). Эти радикалы накапливаются в медленной стадии окисления аллильных радикалов в кристаллических областях полимера. Образующиеся радикалы очень стабильпы. Время их жизни на воздухе при комнатной температуре измеряется годами, при температуре 80° неделями, и лишь нагревание до температуры плавления кристаллитов ПЭВП приводит к их быстрой гибели. Эти данные позволяют заключить, что стабильные радикалы образуются внутри кристаллитов ПЭВП.

Согласно работе [6], существуют несколько типов полимерных или низкомолекулярных радикалов, для которых характерен узкий синглетный спектр ЭПР: полиенильные -- СН2-- (СН=СН), ацильные R--C=О, перекисные ROO и окисные RO радикалы.

Сопоставление кинетики накопления стабильных радикалов в образцах с различными начальными концентрациями аллильных радикалов с0 (рис. 4, кривая 2) показало, что кинетика в координатах с/сt -- время не зависит от с0, что характерно для реакции первого порядка. Кроме того, сравнением кинетики накопления стабильных радикалов на воздухе и в кислороде (рис. 4, кривые 1, 2) установлено, что скорость накопления пропорциональна концентрации кислорода. Эти данные позволяют считать стабильные радикалы продуктом реакции между аллильными радикалами и кислородом, имеющей первый порядок по концентрациям радикалов и кислорода, что исключает отнесение стабильных радикалов к полиенильным.

Ацильные радикалы, как установлено в работе [6], возникают в ПЭ при взаимодействии алкильных радикалов с окисью углерода, которая может образоваться при фотолизе или радиолизе в результате отщепления карбонильных групп. Проведенная нами выдержка образцов ПЭВП с захваченными аллильными радикалами в атмосфере окиси углерода не привела к изменению спектра ЭПР, что исключает отнесение стабильных радикалов к ацильным.

Стабильные радикалы не могут быть отнесены и к перекисным радикалам. При комнатной температуре величина g-фактора для перекисных радикалов в ПЭВП (#=2,014) [3] выше наблюдаемой для стабильных радикалов. Спектр ЭПР стабильных радикалов не изменяется при замораживании образца до --196°, оставаясь узким синглетом, в то время как синглет перекисных радикалов приобретает резко асимметричную форму, характерную для радикалов с анизотропным g-фактором, находящихся в жесткой поликристаллической или аморфной матрице. Для стабильных радикалов не наблюдается характерного для перекисных радикалов [3] отсутствия насыщения сигнала ЭПР при повышенных мощностях СВЧ-облучения.

Совокупность полученных данных приводит к заключению, что стабильные радикалы, появляющиеся в кристаллических областях ПЭВП, являются окисными. Окисные радикалы в ПЭВП образуются, а в ПЭНП нет. Установлено, что эти радикалы не образуются и в сополимерах этилена с пропиленом или бутиленом при содержании сомономера 3--5мол.%, которые имеют плотность кристаллической фазы [8], близкую к плотности кристаллической фазы ПЭНП, и кинетику окисления захваченных радикалов, аналогичную кинетике окисления ПЭНП (рис. 3).

В работе [9] установлено, что параметры элементарной ячейки ПЭВП меняются при изменении температуры. Согласно проведенному на основании данных этой работы расчету, при температуре 80° плотность кристаллических областей ПЭВП близка к плотности кристаллических областей ПЭНП при комнатной температуре. Как показали ЭПР-измерения, при температуре 80° окисление захваченных радикалов в ПЭВП заканчивается за 3--4 ч, при этом окисные радикалы, время жизни которых при этой температуре измеряется неделями, не образуются. Следовательно, окисные радикалы не появляются и в ПЭВП в условиях, когда плотность кристаллических областей в нем такая же, как и в ПЭНП.

Полученные результаты позволяют сделать вывод, что причиной различия механизмов окисления захваченных радикалов в ПЭВП и ПЭНП является различная плотность кристаллических областей в этих полимерах. Плотная кристаллическая решетка ПЭВП создает большие стерические затруднения присоединению к захваченным радикалам молекул кислорода и значительно меньшие затруднения присоединению менее объемных атомов кислорода. Перекисные радикалы не вписываются в решетку ПЭВП без изменения ее плотности, в противоположность окисным. Поэтому в кристаллической решетке ПЭВП окисление захваченных радикалов идет с образованием окисных радикалов RO.

Менее плотная кристаллическая решетка ПЭНП способна включать в себя перекисные радикалы. Окисление захваченных радикалов идет с образованием перекисных радикалов ROO.

Необходимо отметить, что при окислении захваченных радикалов в ПЭВП в окисные радикалы переходило при комнатной температуре около 10% всех захваченных аллильных радикалов, или около 20% радикалов, находящихся в кристаллических областях.

Поскольку окисные радикалы образуются лишь в тех кристаллических областях, плотность которых препятствует образованию перекисных радикалов, то число образовавшихся окисных радикалов пропорционально доле таких плотноупакованных областей в ПЭВП. Установлено, что изменение надмолекулярной структуры ПЭВП в результате термического или механического взаимодействия приводит к изменению количества образующихся окисных радикалов. Так, в пленке ПЭВП, отожженной до облучения при 150° в течение двух часов, окисных радикалов образовалось вдвое больше, а в пленке, подвергнутой при комнатной температуре действию ударной нагрузки ~10 Н/м2, вдвое меньше, чем в исходной пленке ПЭВП.

Таким образом, проведенное исследование выявило существенную роль плотности кристаллических областей в процессе пострадиационного окисления ПЭ. Небольшое различие в плотностях кристаллитов ПЭВП и ПЭНП приводит к резкому различию в скоростях окисления захваченных радикалов и к изменению механизма их окисления. Очевидно, это изменение является причиной существенной разницы процессов окислительной деструкции и соответственно эксплуатационных характеристик радиационно-модифицированных ПЭВП и ПЭНП.

ЛИТЕРАТУРА

1. Финкелъ Э. Э., Брагинский Р. П. В кн.: Радиационная химия полимеров. М.: Наука, 1973, с. 195.

2. Сирота А. Г. Модификация структуры и свойств полиолефинов. Л.: Химия, 1974, с. 128.

Ohnishi S., Sugimoto S., Nitta I. J. Polymer Sci. A, 1963, v. 1, № 1, p. 605.

Segushi Т., Tamura N. J. Phys. Chem., 1973, v. 77, № 1, p. 40.

Kashiwabara H., Hori Y. Radiat. Phys. and Chem., 1981, v. 18, № 5, p. 1061.

Ranby В., Rabek J. F. ESR Spectroscopy in Polymer Research, Berlin: Springer,

1977, p. 173, 254.

Walter E. R., Reding F. P. J. Polymer Sci., 1956, v. 21, № 99, p. 501.

Swan P. R. J. Polymer Sci., 1962, v. 56, № 164, p. 409.

Swan P. R. J. Polymer Sci., 1962, v. 56, № 164, p. 403.




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Другие популярные курсовые работы:

Сейчас смотрят :

Курсовая работа Планирование прибыли и рентабельности предприятия питания
Курсовая работа Организация труда персонала
Курсовая работа Анализ состояния и использования основных фондов
Курсовая работа Проблема административной ответственности юридических лиц
Курсовая работа Негосударственные пенсионные фонды в РФ. Современное состояние. Перспективы развития
Курсовая работа Управление конкурентоспособностью на примере малого предприятия
Курсовая работа Защита права собственности
Курсовая работа Swot-анализ рынка мобильной связи ОАО "МегаФон"
Курсовая работа Совершенствование управления труда
Курсовая работа Анализ внешней среды фирмы
Курсовая работа Анализ влияния внешней и внутренней среды на принятие управленческих решений
Курсовая работа Особенности управления ликвидностью российских коммерческих банков. Роль нормативов Центральног
Курсовая работа Государственная политика в сфере социальной защиты населения
Курсовая работа Амнистия и помилование
Курсовая работа Инвестиционная политика предприятия и проблемы привлечения инвестиций