Конспект лекций по предмету "Физика и энергетика"

Узнать цену работы по вашей теме


Операторный метод анализа переходных колебаний



Академия России

Кафедра Физики

Лекция:

«ОПЕРАТОРНЫЙ МЕТОД АНАЛИЗА переходных КОЛЕБАНИЙ в электрических цепях»

Орел 2009

Содержание

1. Основные свойства преобразования Лапласа

2. Законы Кирхгофа и Ома в операторной форме

3. Операторные схемы замещения реактивных элементов при ненулевых начальных условиях

4. Библиографический список

1. Основные свойства преобразования Лапласа

Нахождение изображений функции времени (равно как и обратные переходы от изображений к оригиналу) выполняются с помощью специальных интегральных преобразований, приводимых в курсе высшей математики. В настоящее время в большей части современной технической литературы операторные методы связывают с применением преобразования Лапласа, в основе которого лежит соотношение:

.

Важно отметить, что функции, описывающие реально возможные воздействия и соответствующие им реакции, всегда преобразуемы по Лапласу. Полученную в результате такого преобразования функцию называют иногда лапласовым изображением функции или ее -изображением и обозначают:

.

Отыскание -изображения заданной функции называется прямым преобразованием Лапласа, а нахождение по известному - обратным преобразованием Лапласа.

Основные свойства и правила этих преобразований:

Свойство единственности. Каждому оригиналу (исходной функции) соответствует единственное изображение и наоборот, каждому изображению соответствует единственный оригинал.

Свойство линейности. Линейной комбинации оригиналов соответствует такая же линейная комбинация изображений:

- оригинал; - изображение.

Преобразование операции дифференцирования. Если оригинал представляет производную от некоторой функции

,

то его изображение имеет вид: .

При нулевых начальных условиях (ННУ) и , т. е. дифференцированию оригинала соответствует умножение его изображения на оператор (при ННУ).

Преобразование операции интегрирования. Если оригинал представляет от некоторой функции интеграл:

,

то его изображение имеет вид: , т. е. интегрированию оригинала соответствует деление его изображения на оператор .

Теорема запаздывания (оригинала). Если , то , где -- время запаздывания, т. е. запаздыванию оригинала на время соответствует умножение его изображения на экспоненциальный множитель .

Теорема смещения (изображения). Если , то , т. е. умножению оригинала на экспоненциальный множитель соответствует смещение его изображения на величину .

Решение задач прямого и обратного преобразований Лапласа существенно упрощаются в тех случаях, когда удается использовать справочные таблицы, которые содержат пары оригинал - изображение. Эти таблицы приводятся в справочниках.

Следует учесть, что при обратном преобразовании Лапласа полученные функции иногда не подходят под табличные. В этом случае используется разложение этой функции на простые дроби или в ряд с последующим применением обратного преобразования Лапласа.

2. Законы Кирхгофа и Ома в операторной форме

Возможность существенного упрощения решения задачи анализа колебаний в электрических цепях операторным методом основывается на том, что для -изображений колебаний формально верны законы Кирхгофа и Ома.

Действительно, согласно первому закону Кирхгофа:

Если обе части этого равенства подвергнуть преобразованию Лапласа, то оно переходит в равенство:

,

и следовательно, алгебраическая сумма -изображений токов в любом узле цепи равна нулю. Аналогично доказывается справедливость второго закона Кирхгофа для операторных напряжений в контуре:

.

При выводе закона Ома в операторной форме будем полагать, что реактивные элементы находятся при ННУ (конденсатор разряжен, через катушку индуктивности не протекает ток).

Рассмотрим соотношения в элементах электрических цепей.

Элемент резистивного сопротивления.

- операторное резистивное сопротивление,

- резистивная операторная проводимость.

Таким образом, операторное напряжение на резистивном сопротивлении равно произведению сопротивления на величину операторного тока.

Элемент индуктивности.

- операторное индуктивное сопротивление,

- операторная индуктивная проводимость.

Следовательно, операторное напряжение на индуктивности равно произведению операторного индуктивного сопротивления на величину операторного тока.

Элемент емкости.

- операторное емкостное сопротивление,

- операторная емкостная проводимость.

Операторное напряжение на емкости равно произведению операторного емкостного сопротивления на величину операторного тока.

Выражения

представляют закон Ома в операторной форме.

Выводы:

- законы Кирхгофа и Ома справедливы и в операторной форме, причем закон Ома справедлив только при нулевых начальных условиях;

- все ранее изученные методы анализа электрических цепей (метод контурных токов, метод узловых напряжений, метод эквивалентного генератора и др.) справедливы и в операторной форме;

3. Операторные схемы замещения реактивных элементов при ненулевых начальных условиях

Часто коммутация осуществляется в момент времени, когда реактивные элементы обладают энергией. В этом случае они находятся при ненулевых начальных условиях и к ним нельзя применить закон Ома в операторной форме. Для устранения этого препятствия используют прием, суть которого состоит в том, что физически один реактивный элемент искусственно заменяют двумя: операторным источником, отражающим энергию реактивного элемента на момент коммутации, и самим реактивным элементом, но находящимся теперь уже при нулевых начальных условиях. Такое изображение называется схемой замещения. Ее можно получить, используя свойства преобразования Лапласа:

.

Так, для индуктивности с током схемы замещения имеют вид, показанный на рисунке 1.

а) б) в)

Рис. 1

Они являются следствием преобразования следующих выражений:

;

Здесь следует иметь в виду два обстоятельства: направление операторного тока должно совпадать с направлением тока через индуктивность в момент непосредственно предшествующий коммутации и второе, что реально существует один элемент, поэтому операторный ток через индуктивность в схеме замещения определяется в общей ветви (рис. 1б).

Заряженная емкость отображается схемами замещения, показанными на рисунке 2б, в.

а) б) в)

Рис. 2

Они являются следствием преобразования следующих выражений:

,

.

Здесь напряжение операторного источника совпадает с напряжением на емкости до коммутации, а операторное напряжение на емкости определяется между зажимами 1 - 1.

Применение операторных схем замещения реактивных элементов, находящихся при ненулевых начальных условиях, дает возможность применять закон Ома в операторной форме, что широко используется на практике и, в частности, при рассмотрении свободных колебаний в электрических цепях. Известно, что такие колебания возникают за счет энергии, запасенной реактивными элементами при отключении внешних источников. Следует иметь в виду, что указанная коммутация может осуществляться как путем механического отключения, так и путем гашения источников. В последнем случае источник напряжения заменяется коротким замыканием, а источник тока - обрывом.

При решении задач приходится осуществлять переход от обычной к операторной схеме. Если реактивные элементы находятся при ННУ, то такой переход не вызывает особых затруднений. Например, на рисунке 3, а показана исходная схема, а на рисунке 3, б - эквивалентная ей операторная.

а) б)

Рис. 3

Если же реактивные элементы находятся при ненулевых начальных условиях, то в операторной схеме они должны быть отображены схемами замещения.

Пример.

Пусть в цепи, изображенной на рисунке 4 в момент замыкается ключ "К". Требуется определить эквивалентную ей операторную схему.

Рис. 4

Так как реактивные элементы в данном случае находятся при ненулевых начальных условиях, то предварительно следует определить и . Для этого изобразим эквивалентную схему цепи при (рис. 5).

Рис. 5

Видно, что ; .

Таким образом ; и соответствующая этому схема показана на рисунке 6.

Рис. 6

Далее находится требуемая реакция в операторной форме, а затем осуществляется переход в область реального времени.

Вывод: нахождение реакций при ненулевых начальных условиях требует применения схем замещения в операторной форме и является более сложной задачей, чем при ННУ.

Библиографический список

1. Белецкий А.Ф. ТЛЭЦ: учебник для вузов. - М.: Радио и связь, 1986. С. 218 - 226.

2. Шалашов Г.В. Переходные процессы в электрических цепях. -с. 7 - 20.

3. Бакалов В.П. ТЭЦ: учебник для вузов. - М.: Радио и связь, 1998 г. с. 169 - 180.




Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме:

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.

Другие популярные конспекты:

Конспект Основные проблемы и этапы развития средневековой философии
Конспект Проблема познаваемости мира. Гносеологический оптимизм, скептицизм, агностицизм. Взаимосвязь субъекта и объекта познания
Конспект Понятие финансовой устойчивости организации
Конспект Внутренняя политика первых Романовых.
Конспект ПРОБЛЕМЫ КВАЛИФИКАЦИИ ПРЕСТУПЛЕНИЙ
Конспект Понятие мировоззрения, его уровни и структура. Исторические типы мировоззрения
Конспект Синтагматические, парадигматические и иерархические отношения в языке
Конспект Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом 13
Конспект Происхождение человека. Основные концепции антропосоциогенеза. Антропогенез и культурогенез.
Конспект Общая характеристика процессов сбора, передачи, обработки и накопления информации