Конспект лекций по предмету "Математический анализ"

Узнать цену работы по вашей теме


Дифференциальные уравнения первого порядка

Определение 1.Уравнение вида F(x, y, y')=0, где х — независимая переменная; у — искомая функция; у' — ее производная, называется дифференциальным уравнением первого порядка.
Если уравнение можно разрешить относительно у', то оно принимает вид: y' = f(x,y) и называется уравнением первого порядка, разрешенным относи­тельно производной.
Дифференциальное уравнение удобно записать в виде: , являющемся част­ным случаем более общего уравнения (в симметрической форме): P(x,y)dx+Q(x,y)dy =0, где Р(х, у) и Q (х, у) — известные функции.
Уравнение в симмет­ричной форме удобно тем, что переменные х и у в нем равно­правны, т.е. каждую из них можно рассматривать как функцию от другой.
Определение 2.Решением дифференциального уравнения первого порядка называется функция у=j(х), которая при подстановке в уравнение обра­щает его в тождество.
График решения дифференциального уравнения называется интегральной кривой.
Ответ на вопрос о том, при каких условиях уравнение имеет решение, дает теорема Коши, которая называется теоремой о суще­ствовании и единственности решения дифференциального уравне­ния и является основной в теории дифференциальных уравнений.
Теорема(теорема Коши). Если функция f (x, у) и ее частная производная f'y (x, у) определены и непрерывны в неко­торой области G плоскости Оху, то какова бы ни была внутренняя точка (х0; у0) области G, в некоторой окрестности этой точки су­ществует единственное решение уравнения y'=f(x, у), удовлетво­ряющее условиям: у=уо при х=х0.
Теорема Коши дает возможность по виду дифференциального уравнения решать вопрос о существовании и единственности его решения. Это особенно важно в тех случаях, когда заранее не­известно, имеет ли данное уравнение решение.
Геометрически теорема утверждает, что через каждую внутрен­нюю точку (x0; у0) области G проходит единственная интегральная кривая. Очевидно, что в области G уравнение имеет бесконеч­ное число различных решений.
Условия, в силу которых функция у=j(х) принимает за­данное значение у0 в заданной точке х0, называют начальными усло­виями решения.
Отыскание решения уравнения, удовлетворяющего началь­ным условиям, — одна из важнейших задач теории дифферен­циальных уравнений. Эта задача называется задачей Коши.
С гео­метрической точки зрения решить задачу Коши — значит из мно­жества интегральных кривых выделить ту, которая проходит через заданную точку (х0; у0) плоскости Оху.
Точки плоскости, через которые либо проходит более одной ин­тегральной кривой, либо не проходит ни одной интегральной кри­вой, называются особыми точками данного уравнения.
Определение 3.Общим решением уравнения в некоторой области G плоскости Оху называется функция у=j(х, С), завися­щая от х и произвольной постоянной С, если она является решени­ем уравнения при любом значении постоянной С, и если при любых начальных условиях таких, что (х0; у0)ÎG, существует единственное значение постоянной С=С0 такое, что функция у=j(х, С0) удовлетворяет данным начальным условиям j (х0, С)=С0.
Определение 4.Частным решением уравнения в области G называется функция у=j(х, С0), которая получается из общего решения у=у(х, С) при определенном значении постоянной С=С0.

Геометрически общее решение представляет собой семейство интегральных кривых на плоскости Оху, зависящее от одной произвольной постоянной С, а частное решение — одну интегральную кривую этого семейства, проходящую через заданную точку (х0; у0).
Иногда начальные условия называют условиями Коши, а частным решением называют решение какой-нибудь задачи Коши.

Геометрический смысл уравнения. Пусть дано дифференциаль­ное уравнение первого порядка y'=f(x, у) и пусть функция у=j(х) - его решение. График решения представляет собой непрерывную интегральную кривую, через каждую точку которой можно провести касательную. Из уравнения следует, что угловой коэффициент у' касательной к интегральной кривой в каждой ее точке (х; у) равен значению в этой точке правой части уравнения f(x, у). Таким образом, уравнение y' = f(x, у) устанавливает за­висимость между координатами точки (х; у) и угловым коэффициен­том у' касательной к графику интегральной кривой в той же точке. Зная х и у, можно указать направление касательной к этой интег­ральной кривой в точке (х; у). Сопоставим каждой точке (х; у) интегральной кривой направ­ленный отрезок, угловой коэффициент которого равен f(х, у). По­лучим так называемое поле направлений данного уравнения, рас­крывающее геометрический смысл дифференциального уравнения первого порядка.
Итак, с геометрической точки зрения уравнение y'=f(x, у) определяет на плоскости Оху поле направлений, а решение этого уравнения — интегральная кривая, направление касательной к которой в каждой точке совпадает с направлением поля в этой точке.
Построив на плоскости поле направлений данного дифферен­циального уравнения, можно приближенно построить интеграль­ные кривые.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.

Другие популярные конспекты:

Конспект Основные проблемы и этапы развития средневековой философии
Конспект Проблема познаваемости мира. Гносеологический оптимизм, скептицизм, агностицизм. Взаимосвязь субъекта и объекта познания
Конспект Понятие финансовой устойчивости организации
Конспект Внутренняя политика первых Романовых.
Конспект Понятие мировоззрения, его уровни и структура. Исторические типы мировоззрения
Конспект ПРОБЛЕМЫ КВАЛИФИКАЦИИ ПРЕСТУПЛЕНИЙ
Конспект Синтагматические, парадигматические и иерархические отношения в языке
Конспект Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом 13
Конспект Происхождение человека. Основные концепции антропосоциогенеза. Антропогенез и культурогенез.
Конспект Общая характеристика процессов сбора, передачи, обработки и накопления информации