Конспект лекций по предмету "Математическая логика"

Узнать цену работы по вашей теме


Способы математического доказательства

Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных утверждений.
В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обосновано и также истинно, как и последние.
Таким образом, основой математического доказательства является дедуктивный метод. Доказательство – это совокупность логических приемов обоснования истинности какого-либо утверждения с помощью других истинных и связанных с ним утверждений.
Математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.
Доказательства различают прямые и косвенные.

Прямые доказательства.
1) Основываясь на некоторых истинных предложениях и условии теоремы строится цепочка дедуктивных умозаключений, которые приводят к истинному заключению.
Пример. Докажем, что вертикальные углы равны. Углы 1 и 2 – смежные, следовательно, Ð 1 + Ð 2 = 180о. Углы 2 и 3 – смежные, следовательно, Ð 2 + Ð 3 = 180о. Имеем: Ð 1 = 180о – Ð 2 Ð 3 = 180о – Ð 2 Þ Ð 1 = Ð 2.

2
1 3


2) Метод математической индукции. Утверждение справедливо для всякого натурального числа п, если: оно справедливо для п = 1 и из справедливости утверждения для какого-либо произвольного натурального п = k следует его справедливость для п = k + 1. (Подробнее будет рассмотрено на старших курсах.)
3) Полная индукция (смотри ранее).

Косвенные доказательства.
1) Метод от противного. Пусть требуется доказать теорему А Þ В. Допускают, что ее заключение ложно, а значит, его отрицание истинно. Присоединив предложение к совокупности истинных посылок, используемых в процессе доказательства (среди которых есть и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок. Полученное противоречие доказывает теорему.
Пример. Если две прямые параллельны одной и той же прямой, то они параллельны между собой.
Дано: хúú с, уúú с. Доказать, что х úú у.
Доказательство. Пусть прямая х не параллельна прямой у, т.е. прямые пересекаются в некоторой точке А. Следовательно, через точку А проходят две прямые, параллельные прямой с, что невозможно по аксиоме параллельности.

2) Доказательство, основанное на законе контрапозиции: вместо теоремы А Þ В доказывают равносильную ей теорему . Если она истинна, то исходная теорема тоже истинна.
Пример. Если х2 – четное число, то х – четное число.
Доказательство. Предположим, что х – нечетное число, т.е. х = 2k + 1 Þ х2 = (2k + 1)2 = = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 – нечетное.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.

Другие популярные конспекты:

Конспект Основные проблемы и этапы развития средневековой философии
Конспект Проблема познаваемости мира. Гносеологический оптимизм, скептицизм, агностицизм. Взаимосвязь субъекта и объекта познания
Конспект Понятие финансовой устойчивости организации
Конспект Внутренняя политика первых Романовых.
Конспект Понятие мировоззрения, его уровни и структура. Исторические типы мировоззрения
Конспект ПРОБЛЕМЫ КВАЛИФИКАЦИИ ПРЕСТУПЛЕНИЙ
Конспект Синтагматические, парадигматические и иерархические отношения в языке
Конспект Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом 13
Конспект Происхождение человека. Основные концепции антропосоциогенеза. Антропогенез и культурогенез.
Конспект Общая характеристика процессов сбора, передачи, обработки и накопления информации