Конспект лекций по предмету "Математическая логика"

Узнать цену работы по вашей теме


Свойства отношений

Отношение, заданное на множестве, может обладать рядом свойств, а именно:
1. Рефлексивность
Определение. Отношение R на множестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.
Используя символы, это отношение можно записать в таком виде:
R рефлексивно на Х Û ("х Î Х) х R х
Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.
Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность
Определение. Отношение R на множестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.
R антирефлексивно на Х Û ("х Î Х)
Пример. Отношение «прямая х перпендикулярна прямой у» на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.
Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у» на множестве точек плоскости.
· у
l
х

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность
Определение. Отношение R на множестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.
R симметрично на Х Û ("х, у Î Х) х R у Þ у R х
Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у, то и прямая у обязательно будет пересекать прямую х.
Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность
Определение. Отношение R на множестве Х называется асимметричным, если ни для каких элементов х, у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х.
R асимметрично на Х Û ("х, у Î Х) х R у Þ
Пример. Отношение «х < у» асимметрично, т.к. ни для какой пары элементов х, у нельзя сказать, что одновременно х < у и у < х.
Граф асиметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность
Определение. Отношение R на множестве Х называется антисимметричным, если из того что х находится в отношении с у, а у находится в отношении с х следует, что х = у.
R антисимметрично на Х Û ("х, у Î Х) х R у Ù у R х Þ х = у
Пример. Отношение «х £ у» антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.
Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность
Определение. Отношение R на множестве Х называется транзитивным, если для любых элементов х, у, z из множества Х из того, что х находится в отношении с у, а у находится в отношении с z следует, что х находится в отношении с z.
R транзитивно на Х Û ("х, у, z Î Х) х R у Ù у R z Þ х R z
Пример. Отношение «х кратно у» транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.
Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность
Определение. Отношение R на множестве Х называется связным, если для любых элементов х, у из множества Х х находится в отношении с у или у находится в отношении с х или х = у.
R связно на Х Û ("х, у, z Î Х) х R у Ú у R z Ú х = у
Другими словами: отношение R на множестве Х называется связным, если для любых различных элементов х, у из множества Х х находится в отношении с у или у находится в отношении с х или х = у.
Пример. Отношение «х < у» связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.
На графе связного отношения все вершины соединены между собой стрелками.
Пример. Проверить, какими свойствами обладает
отношение «х – делитель у», заданное на множестве
Х = {2; 3; 4; 6; 8}.
Построим граф данного отношения:


1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;
2) свойством антирефлексивности данное отношение не обладает;
3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;
4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;
5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;
6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.
Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.

Другие популярные конспекты:

Конспект Основные проблемы и этапы развития средневековой философии
Конспект Проблема познаваемости мира. Гносеологический оптимизм, скептицизм, агностицизм. Взаимосвязь субъекта и объекта познания
Конспект Понятие финансовой устойчивости организации
Конспект Внутренняя политика первых Романовых.
Конспект Понятие мировоззрения, его уровни и структура. Исторические типы мировоззрения
Конспект ПРОБЛЕМЫ КВАЛИФИКАЦИИ ПРЕСТУПЛЕНИЙ
Конспект Синтагматические, парадигматические и иерархические отношения в языке
Конспект Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом 13
Конспект Происхождение человека. Основные концепции антропосоциогенеза. Антропогенез и культурогенез.
Конспект Общая характеристика процессов сбора, передачи, обработки и накопления информации